Primordial power spectrum from an objective collapse mechanism: The simplest case
- URL: http://arxiv.org/abs/2411.04816v1
- Date: Thu, 07 Nov 2024 15:54:20 GMT
- Title: Primordial power spectrum from an objective collapse mechanism: The simplest case
- Authors: Martin Miguel Ocampo, Octavio Palermo, Gabriel León, Gabriel R. Bengochea,
- Abstract summary: In this work we analyze the physical origin of the primordial inhomogeneities during the inflation era.
We incorporate an objective collapse mechanism based on the Continuous Spontaneous Localization (CSL) model.
We obtain a primordial spectrum that has the same distinctive features as the standard one, which is consistent with the observations from the Cosmic Microwave Background.
- Score: 0.0
- License:
- Abstract: In this work we analyzed the physical origin of the primordial inhomogeneities during the inflation era. The proposed framework is based, on the one hand, on semiclassical gravity, in which only the matter fields are quantized and not the spacetime metric. Secondly, we incorporate an objective collapse mechanism based on the Continuous Spontaneous Localization (CSL) model, and we apply it to the wavefunction associated with the inflaton field. This is introduced due to the close relation between cosmology and the so-called ``measurement problem'' in Quantum Mechanics. In particular, in order to break the homogeneity and isotropy of the initial Bunch-Davies vacuum, and thus obtain the inhomogeneities observed today, the theory requires something akin to a ``measurement'' (in the traditional sense of Quantum Mechanics). This is because the linear evolution driven by Schr\"odinger's equation does not break any initial symmetry. The collapse mechanism given by the CSL model provides a satisfactory mechanism for breaking the initial symmetries of the Bunch-Davies vacuum. The novel aspect in this work is that the constructed CSL model arises from the simplest choices for the collapse parameter and operator. From these considerations, we obtain a primordial spectrum that has the same distinctive features as the standard one, which is consistent with the observations from the Cosmic Microwave Background.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Isotropic Universe in RQM Analogy: the Cosmological Horizon [0.0]
We investigate the quantum dynamics of the isotropic Universe in the presence of a free massless scalar field.
We show how the introduction of a "turning point" in the Universe evolution allows to overcome an intrinsic ambiguity in representing the expanding and collapsing Universe.
arXiv Detail & Related papers (2024-04-10T14:45:56Z) - Effective dynamics of quantum fluctuations in field theory: with applications to cosmology [3.164510639842928]
We develop a novel framework for describing quantum fluctuations in field theory.
Our findings offer fresh insights into the early universe's quantum fluctuations and potential explanations to large-scale CMB anomalies.
arXiv Detail & Related papers (2023-12-26T19:01:24Z) - Power-law decay of the fraction of the mixed eigenstates in kicked top
model with mixed-type classical phase space [8.402742655847774]
Mixed eigenstates are identified by means of the phase space overlap index.
We show that the mixed eigenstates appear due to various tunneling precesses between different phase space structures.
In particular, we find that the relative fraction of mixed states exhibits a power-law decay as the system size increases.
arXiv Detail & Related papers (2023-08-09T09:23:27Z) - Timescales of quantum and classical chaotic spin models evolving toward
equilibrium [0.0]
We investigate the quench dynamics of a strongly chaotic lattice with $L$ interacting spins.
By analyzing both the classical and quantum dynamics, we identify and elucidate the two mechanisms of the relaxation process.
arXiv Detail & Related papers (2023-07-11T18:00:04Z) - Observations in Quantum Cosmology [0.0]
We look at whether a canonical quantization of general relativity can produce testable predictions for cosmology.
In particular, we examine how this approach can be used to model the evolution of primordial perturbations.
We conclude that the subject of quantum geometrodynamics illuminates conceptual issues in quantum gravitation.
arXiv Detail & Related papers (2023-06-26T18:00:01Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.