Efficient quantum pseudorandomness under conservation laws
- URL: http://arxiv.org/abs/2411.04893v1
- Date: Thu, 07 Nov 2024 17:32:04 GMT
- Title: Efficient quantum pseudorandomness under conservation laws
- Authors: Zimu Li, Han Zheng, Zi-Wen Liu,
- Abstract summary: Local unitary designs capture statistical notions of quantum pseudorandomness.
In particular, the question of whether any local symmetric circuit can generate 2-designs efficiently remains open.
We explicitly construct local symmetric quantum circuits which converge to symmetric unitary 2-designs in time.
- Score: 4.8120624300714665
- License:
- Abstract: The efficiency of locally generating unitary designs, which capture statistical notions of quantum pseudorandomness, lies at the heart of wide-ranging areas in physics and quantum information technologies. While there are extensive potent methods and results for this problem, the evidently important setting where continuous symmetries or conservation laws (most notably U(1) and SU(d)) are involved is known to present fundamental difficulties. In particular, even the basic question of whether any local symmetric circuit can generate 2-designs efficiently (in time that grows at most polynomially in the system size) remains open with no circuit constructions provably known to do so, despite intensive efforts. In this work, we resolve this long-standing open problem for both U(1) and SU(d) symmetries by explicitly constructing local symmetric quantum circuits which we prove to converge to symmetric unitary 2-designs in polynomial time using a combination of representation theory, graph theory, and Markov chain methods. As a direct application, our constructions can be used to efficiently generate near-optimal random covariant quantum error-correcting codes, confirming a conjecture in [PRX Quantum 3, 020314 (2022)].
Related papers
- Measurement-induced entanglement and complexity in random constant-depth 2D quantum circuits [0.0]
We analyse the entanglement structure of states generated by random constant-depth quantum circuits.
We prove that macroscopic long-ranged entanglement is generated above some constant critical depth in several natural classes of circuit architectures.
arXiv Detail & Related papers (2024-10-30T17:33:02Z) - All you need is spin: SU(2) equivariant variational quantum circuits
based on spin networks [0.0]
Variational algorithms require architectures that naturally constrain the optimisation space to run efficiently.
We propose the use of spin networks, a form of directed tensor network invariant under a group transformation, to devise SU(2) equivariant quantum circuit ans"atze.
By changing to the basis that block diagonalises SU(2) group action, these networks provide a natural building block for constructing parameterised equivariant quantum circuits.
arXiv Detail & Related papers (2023-09-13T18:38:41Z) - A Bottom-up Approach to Constructing Symmetric Variational Quantum
Circuits [0.0]
We show how to construct symmetric quantum circuits using representation theory.
We show how to derive the particle-conserving exchange gates, which are commonly used in constructing hardware-efficient quantum circuits.
arXiv Detail & Related papers (2023-08-17T10:57:15Z) - Stabilization of symmetry-protected long-range entanglement in stochastic quantum circuits [0.0]
We consider quantum circuits in one and two dimensions comprising randomly applied unitary gates and local measurements.
In the absence of randomness, the protocol generates a symmetry-protected long-range entangled state in a finite-depth circuit.
We find two important time scales that we associate with the emergence of certain symmetry generators.
arXiv Detail & Related papers (2023-06-22T16:09:12Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Near-optimal covariant quantum error-correcting codes from random
unitaries with symmetries [1.2183405753834557]
We analytically study the most essential cases of $U(1)$ and $SU(d)$ symmetries.
We show that for both symmetry groups the error of the covariant codes generated by Haar-random symmetric unitaries, typically scale as $O(n-1)$ in terms of both the average- and worst-case distances against erasure noise.
arXiv Detail & Related papers (2021-12-02T18:46:34Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Efficient simulatability of continuous-variable circuits with large
Wigner negativity [62.997667081978825]
Wigner negativity is known to be a necessary resource for computational advantage in several quantum-computing architectures.
We identify vast families of circuits that display large, possibly unbounded, Wigner negativity, and yet are classically efficiently simulatable.
We derive our results by establishing a link between the simulatability of high-dimensional discrete-variable quantum circuits and bosonic codes.
arXiv Detail & Related papers (2020-05-25T11:03:42Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.