論文の概要: Sampling-guided Heterogeneous Graph Neural Network with Temporal Smoothing for Scalable Longitudinal Data Imputation
- arxiv url: http://arxiv.org/abs/2411.04899v1
- Date: Thu, 07 Nov 2024 17:41:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:52.360695
- Title: Sampling-guided Heterogeneous Graph Neural Network with Temporal Smoothing for Scalable Longitudinal Data Imputation
- Title(参考訳): 時空平滑化を用いたサンプリング誘導ヘテロジニアスグラフニューラルネットによる経時的データインプット
- Authors: Zhaoyang Zhang, Ziqi Chen, Qiao Liu, Jinhan Xie, Hongtu Zhu,
- Abstract要約: そこで本研究では,Samping-Guided Heterogeneous Graph Neural Network (SHT-GNN) を提案する。
主観的なミニバッチサンプリングと多層時間平滑化機構を活用することで、SHT-GNNは大規模データセットに効率よくスケールする。
Alzheimer's Disease Neuroimaging Initiative (ADNI)データセットを含む、合成と実世界の両方のデータセットの実験は、SHT-GNNが既存の計算方法を大幅に上回っていることを実証している。
- 参考スコア(独自算出の注目度): 17.81217890585335
- License:
- Abstract: In this paper, we propose a novel framework, the Sampling-guided Heterogeneous Graph Neural Network (SHT-GNN), to effectively tackle the challenge of missing data imputation in longitudinal studies. Unlike traditional methods, which often require extensive preprocessing to handle irregular or inconsistent missing data, our approach accommodates arbitrary missing data patterns while maintaining computational efficiency. SHT-GNN models both observations and covariates as distinct node types, connecting observation nodes at successive time points through subject-specific longitudinal subnetworks, while covariate-observation interactions are represented by attributed edges within bipartite graphs. By leveraging subject-wise mini-batch sampling and a multi-layer temporal smoothing mechanism, SHT-GNN efficiently scales to large datasets, while effectively learning node representations and imputing missing data. Extensive experiments on both synthetic and real-world datasets, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, demonstrate that SHT-GNN significantly outperforms existing imputation methods, even with high missing data rates. The empirical results highlight SHT-GNN's robust imputation capabilities and superior performance, particularly in the context of complex, large-scale longitudinal data.
- Abstract(参考訳): 本稿では,Samping-Guided Heterogeneous Graph Neural Network (SHT-GNN)を提案する。
不規則なデータや一貫性のないデータを扱うために大規模な事前処理を必要とする従来の手法とは異なり、我々の手法は計算効率を保ちながら任意の欠落データパターンに対応できる。
SHT-GNNは、観測と共変量の両方を異なるノードタイプとしてモデル化し、連続する時間点の観測ノードを主観的垂直部分ネットを通して接続する。
主観的なミニバッチサンプリングと多層時間平滑化機構を活用することで、SHT-GNNはノード表現を効果的に学習し、欠落したデータを出力しながら、大規模データセットに効率よくスケールする。
Alzheimer's Disease Neuroimaging Initiative (ADNI)データセットを含む、合成と現実の両方のデータセットに関する大規模な実験は、SHT-GNNが、高いデータレートを欠く場合でも、既存の計算方法よりも大幅に優れていることを実証している。
実験結果はSHT-GNNの堅牢な計算能力と優れた性能、特に複雑で大規模な縦断データにおいて顕著である。
関連論文リスト
- Improving age prediction: Utilizing LSTM-based dynamic forecasting for
data augmentation in multivariate time series analysis [16.91773394335563]
本稿では,Long Short-Term Memory (LSTM) ネットワークを用いた動的予測を利用したデータ拡張検証フレームワークを提案する。
これらの拡張データセットの有効性を、時系列年齢予測タスク用に設計された様々なディープラーニングモデルを用いて、元のデータと比較した。
論文 参考訳(メタデータ) (2023-12-11T22:47:26Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
機能的磁気共鳴イメージング(fMRI)データから抽出した機能的接続性(FC)ネットワークを訓練したディープニューラルネットワークが人気を博している。
グラフニューラルネットワーク(GNN)のFCへの適用に関する最近の研究は、FCの時間変化特性を活用することにより、モデル予測の精度と解釈可能性を大幅に向上させることができることを示唆している。
高品質なfMRIデータとそれに対応するラベルを取得するための高コストは、実環境において彼らのアプリケーションにハードルをもたらす。
本研究では,動的FC内の時間情報を効果的に活用するためのSSL生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T16:14:43Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - NeuroDAVIS: A neural network model for data visualization [0.0]
データビジュアライゼーションのための新しい教師なしディープニューラルネットワークモデルNeuroDAVISを導入する。
NeuroDAVISは、データ分散を仮定することなく、データから重要な特徴を抽出することができる。
高次元におけるデータの近傍関係は低次元で保存されていることが理論的に示されている。
論文 参考訳(メタデータ) (2023-04-01T21:20:34Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
グラフ畳み込みネットワーク(GCN)は、隣人層の情報を層ごとに集約することでノードの埋め込みを生成する。
GCNの高計算とメモリコストにより、大きなグラフのトレーニングが不可能になる。
MG-GCNと呼ばれる新しいモデルでは、精度、トレーニング速度、収束速度、メモリコストの点で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-11-17T14:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。