Concurrence speed limit and its connection with bounds in many body physics
- URL: http://arxiv.org/abs/2411.04930v1
- Date: Thu, 07 Nov 2024 18:09:58 GMT
- Title: Concurrence speed limit and its connection with bounds in many body physics
- Authors: Shrobona Bagchi,
- Abstract summary: We derive a speed limit bound for a quantum correlation named the concurrence for the generally mixed quantum states of two qubits.
We discuss the connection of the findings of this article in the interdisciplinary area of the condensed matter physics or the many body physics and quantum information science.
- Score: 0.0
- License:
- Abstract: Quantum speed limit is a fundamental speed limit for the evolution of quantum states. It is the single-most important interpretation of the time energy uncertainty relation. Recently the speed limit of quantum correlations have been proposed like the concurrence for pure quantum states. In this direction, we derive a speed limit bound for a quantum correlation named the concurrence for the generally mixed quantum states of two qubits. By this we mean that we find an expression for the minimum time required to reach a given value of entanglement starting from an arbitrary initial generally mixed state. We discuss the connection of the findings of this article in the interdisciplinary area of the condensed matter physics or the many body physics and quantum information science such as on the topic of Lieb-Robinson bound in a quantitative manner.
Related papers
- Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Time optimal quantum state transfer in a fully-connected quantum
computer [1.431386688501923]
We develop a new Quantum Brachistochrone method that can incorporate inequality constraints on the Hamiltonian.
This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.
arXiv Detail & Related papers (2023-03-08T18:59:09Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Operational definition of a quantum speed limit [8.987823293206912]
The quantum speed limit is a fundamental concept in quantum mechanics, which aims at finding the minimum time scale or the maximum dynamical speed for some fixed targets.
Here we provide an operational approach for the definition of the quantum speed limit, which utilizes the set of states that can fulfill the target to define the speed limit.
arXiv Detail & Related papers (2020-02-25T12:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.