Time optimal quantum state transfer in a fully-connected quantum
computer
- URL: http://arxiv.org/abs/2303.04804v2
- Date: Mon, 27 Nov 2023 17:52:18 GMT
- Title: Time optimal quantum state transfer in a fully-connected quantum
computer
- Authors: Casey Jameson, Bora Basyildiz, Daniel Moore, Kyle Clark, and Zhexuan
Gong
- Abstract summary: We develop a new Quantum Brachistochrone method that can incorporate inequality constraints on the Hamiltonian.
This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.
- Score: 1.431386688501923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The speed limit of quantum state transfer (QST) in a system of interacting
particles is not only important for quantum information processing, but also
directly linked to Lieb-Robinson-type bounds that are crucial for understanding
various aspects of quantum many-body physics. For strongly long-range
interacting systems such as a fully-connected quantum computer, such a speed
limit is still unknown. Here we develop a new Quantum Brachistochrone method
that can incorporate inequality constraints on the Hamiltonian. This method
allows us to prove an exactly tight bound on the speed of QST on a subclass of
Hamiltonians experimentally realizable by a fully-connected quantum computer.
Related papers
- Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Exact Quantum Speed Limits [0.0]
We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
arXiv Detail & Related papers (2023-05-05T20:38:54Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Stronger Quantum Speed Limit [0.0]
We prove a stronger quantum speed limit (SQSL) for all quantum systems undergoing arbitrary unitary evolution.
The stronger quantum speed limit will have wide range of applications in quantum control, quantum computing and quantum information processing.
arXiv Detail & Related papers (2022-08-10T17:56:51Z) - The effect of quantum memory on quantum speed limit time for
CP-(in)divisible channels [0.0]
Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states.
We show that the presence of quantum memory can speed up quantum evolution.
arXiv Detail & Related papers (2021-07-06T04:48:08Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Demonstration of quantum brachistochrones between distant states of an
atom [0.0]
We show fast coherent transport of an atomic wave packet over a distance of 15 times its size.
Results shed light upon a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
arXiv Detail & Related papers (2020-09-04T15:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.