SPGD: Steepest Perturbed Gradient Descent Optimization
- URL: http://arxiv.org/abs/2411.04946v1
- Date: Thu, 07 Nov 2024 18:23:30 GMT
- Title: SPGD: Steepest Perturbed Gradient Descent Optimization
- Authors: Amir M. Vahedi, Horea T. Ilies,
- Abstract summary: This paper presents the Steepest Perturbed Gradient Descent (SPGD) algorithm.
It is designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference.
Preliminary results show a substantial improvement over four established methods.
- Score: 0.0
- License:
- Abstract: Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
Related papers
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Learning the structure of Directed A Graphs (DAGs) presents a significant challenge due to the vast search space of possible graphs, which scales with the number of nodes.
Recent advancements have redefined this problem as a continuous optimization task by incorporating differentiable a exponentiallyity constraints.
We present a novel framework for learning DAGs, employing a Approximation approach integrated with Gradient Descent (SGD)-based optimization techniques.
arXiv Detail & Related papers (2024-10-31T12:13:11Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - ProGO: Probabilistic Global Optimizer [9.772380490791635]
In this paper we develop an algorithm that converges to the global optima under some mild conditions.
We show that the proposed algorithm outperforms, by order of magnitude, many existing state-of-the-art methods.
arXiv Detail & Related papers (2023-10-04T22:23:40Z) - Path Signatures for Diversity in Probabilistic Trajectory Optimisation [24.101232487591094]
Motion planning can be cast as a trajectory optimisation problem where a cost is minimised as a function of the trajectory being generated.
Recent advancements in computing hardware allow for parallel trajectory optimisation where multiple solutions are obtained simultaneously.
We propose an algorithm for parallel trajectory optimisation that promotes diversity over the range of solutions, therefore avoiding mode collapses.
arXiv Detail & Related papers (2023-08-08T06:10:53Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - RL-PGO: Reinforcement Learning-based Planar Pose-Graph Optimization [1.4884785898657995]
This paper presents a state-of-the-art Deep Reinforcement Learning (DRL) based environment and proposed agent for 2D pose-graph optimization.
We demonstrate that the pose-graph optimization problem can be modeled as a partially observable Decision Process and evaluate performance on real-world and synthetic datasets.
arXiv Detail & Related papers (2022-02-26T20:10:14Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
This paper shows how to find global optima in structural optimization problems.
By exploiting certain cost functions we either obtain the global at best or obtain superior results at worst when compared to established optimization procedures.
arXiv Detail & Related papers (2021-10-28T09:50:29Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaM outperforms existing path planning methods in 2D navigation tasks, especially in the presence of difficult-to-escape local optima.
These gains transfer to highly multimodal real-world tasks, where we outperform strong baselines in compiler phase ordering by up to 245% and in molecular design by up to 0.4 on properties on a 0-1 scale.
arXiv Detail & Related papers (2021-06-19T18:06:11Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.