論文の概要: SuffixDecoding: A Model-Free Approach to Speeding Up Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2411.04975v1
- Date: Thu, 07 Nov 2024 18:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:45.497053
- Title: SuffixDecoding: A Model-Free Approach to Speeding Up Large Language Model Inference
- Title(参考訳): SuffixDecoding: 大規模言語モデル推論の高速化のためのモデルフリーアプローチ
- Authors: Gabriele Oliaro, Zhihao Jia, Daniel Campos, Aurick Qiao,
- Abstract要約: SuffixDecodingは、投機的復号化を通じて大きな言語モデル(LLM)推論を加速するためのモデルなしのアプローチである。
当社のアプローチは,新たなモデルの維持と編成のオーバーヘッドを伴わずに,柔軟な木構造推測を可能にする。
プロプライエタリなマルチLLMテキスト・ツー・トーケンアプリケーションでは、SuffixDecodingは2.9倍の出力スループットと3倍のレイテンシを実現している。
- 参考スコア(独自算出の注目度): 9.143856130336783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SuffixDecoding, a novel model-free approach to accelerating large language model (LLM) inference through speculative decoding. Unlike existing methods that rely on draft models or specialized decoding heads, SuffixDecoding leverages suffix trees built from previously generated outputs to efficiently predict candidate token sequences. Our approach enables flexible tree-structured speculation without the overhead of maintaining and orchestrating additional models. SuffixDecoding builds and dynamically updates suffix trees to capture patterns in the generated text, using them to construct speculation trees through a principled scoring mechanism based on empirical token frequencies. SuffixDecoding requires only CPU memory which is plentiful and underutilized on typical LLM serving nodes. We demonstrate that SuffixDecoding achieves competitive speedups compared to model-based approaches across diverse workloads including open-domain chat, code generation, and text-to-SQL tasks. For open-ended chat and code generation tasks, SuffixDecoding achieves up to $1.4\times$ higher output throughput than SpecInfer and up to $1.1\times$ lower time-per-token (TPOT) latency. For a proprietary multi-LLM text-to-SQL application, SuffixDecoding achieves up to $2.9\times$ higher output throughput and $3\times$ lower latency than speculative decoding. Our evaluation shows that SuffixDecoding maintains high acceptance rates even with small reference corpora of 256 examples, while continuing to improve performance as more historical outputs are incorporated.
- Abstract(参考訳): 提案するSuffixDecodingは,投機的復号化による大規模言語モデル(LLM)推論を高速化する,新しいモデルフリーアプローチである。
ドラフトモデルや特別なデコードヘッドに依存する既存のメソッドとは異なり、SuffixDecodingは以前に生成された出力から構築された接尾辞木を利用して、候補トークンシーケンスを効率的に予測する。
当社のアプローチは,新たなモデルの維持と編成のオーバーヘッドを伴わずに,柔軟な木構造推測を可能にする。
SuffixDecodingは、サフィックスツリーをビルドし、動的に更新し、生成されたテキストのパターンをキャプチャし、経験的トークン頻度に基づいた原則化されたスコアリングメカニズムを通じて推測ツリーを構築する。
SuffixDecodingはCPUメモリのみを必要とする。
SuffixDecodingは、オープンドメインチャット、コード生成、テキスト・トゥ・SQLタスクなど、さまざまなワークロードにわたるモデルベースのアプローチと比較して、競合的なスピードアップを実現しています。
オープンエンドのチャットやコード生成タスクでは、SuffixDecodingはSpecInferよりも14\times$高い出力スループットを実現し、TPOTレイテンシは1.1\times$低いタイム・パー・トケン(TPOT)である。
プロプライエタリなマルチLLMテキスト-SQLアプリケーションの場合、SuffixDecodingは2.9\times$高出力スループット、$3\times$低レイテンシを実現する。
SuffixDecodingは256例の小さな参照コーパスであっても高い受け入れ率を維持しつつ、より歴史的な出力が組み込まれるにつれて性能を向上し続けていることを示す。
関連論文リスト
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
CoT推論(Chain-of-Thought reasoning)は、推論中の中間推論をステップバイステップで促進する。
CoTは、長いトークンシーケンスに対する自己回帰復号化に依存するため、かなりの計算オーバーヘッドを導入している。
本稿では,CoT推論を高速化するトークンレベルの信頼度に基づくハイブリッドデコーディングフレームワークであるR-Stitchを提案する。
論文 参考訳(メタデータ) (2025-07-23T08:14:36Z) - Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
並列にサンプリングされたトークンの数を動的に調整する新しい手法であるアダプティブ並列復号法(APD)を導入する。
APDは、ダウンストリームベンチマークで最小限の品質劣化を伴って、非常に高いスループットを提供する。
論文 参考訳(メタデータ) (2025-05-31T06:10:10Z) - Reviving Any-Subset Autoregressive Models with Principled Parallel Sampling and Speculative Decoding [55.2480439325792]
任意の順序言語モデルでは、正しい関節分布からトークンを並列にサンプリングする方法がオープンな問題である。
我々は,任意のサブセット自動回帰モデル (AS-ARM) という,異なるモデルのクラスが解を持っていることを発見した。
我々は,AS-ARMがベンチマークタスクを埋め込んだ200M未満のパラメータモデル間で最先端の性能を実現し,コード生成における50倍のモデルの性能とほぼ一致していることを示す。
論文 参考訳(メタデータ) (2025-04-29T06:33:13Z) - DEL: Context-Aware Dynamic Exit Layer for Efficient Self-Speculative Decoding [7.204881999658682]
DELは、推論中に出口層と投機長を適応的に選択するプラグイン・アンド・プレイ方式である。
Delは、全体的なスピードアップを$2.16times$$$sim$$2.50times$ over vanilla auto-regressive decoding で達成している。
論文 参考訳(メタデータ) (2025-04-08T01:12:59Z) - SpecHub: Provable Acceleration to Multi-Draft Speculative Decoding [28.76164449548306]
MDSD(Multi-Draft Speculative Decoding)は、より小さなドラフトモデルを用いて複数のトークンシーケンスを生成することで、有望なソリューションを提供する。
線形計算オーバーヘッドのみで受け入れ率を向上するMDSDの新しい,効率的なサンプリング検証手法であるSpecHubを提案する。
論文 参考訳(メタデータ) (2024-11-08T02:47:07Z) - AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration [0.3626013617212667]
本稿では,AMUSD (Asynchronous Multi-device Speculative Decoding) を導入し,ドラフトを分離し,フェーズを検証することによって生成を高速化するシステムを提案する。
AMUSDは、1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機復号法とは異なり、どちらのモデルも別々のデバイス上で独立して予測を行うことができる。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$times$スピードアップを達成したことを示す。
論文 参考訳(メタデータ) (2024-10-22T19:15:35Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.82times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
大規模言語モデルにおける文脈長を増大させるため,HiP(Hierarchically Pruned Attention)を提案する。
HiPは注意機構の時間的複雑さを$O(T log T)$に減らし、空間的複雑さを$O(T)$に減らし、$T$はシーケンス長である。
HiPは, 劣化を最小限に抑えつつ, プリフィルとデコードの両方のレイテンシとメモリ使用率を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-06-14T08:32:45Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST)は、任意の長さの実世界のテキストスパンをLM世代に組み込むことができ、それらのソースへの属性を提供する。
NESTは、様々な知識集約タスクにおいて、基本LMの生成品質と帰属率を大幅に向上させる。
さらに、NESTは、Llama-2-Chat 70Bに適用した場合の推論時間において1.8倍のスピードアップを達成することにより、生成速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-05-29T17:55:03Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding [65.94521678103237]
投機的復号化(英: Speculative decoding)は、大規模言語モデルの生成プロセスを加速する広く使われている手法である。
我々は,草案作成プロセスの並列化のために,草案文を生成するOuroborosを紹介した。
ウロボロは投機的復号化で最大2.8倍、バニラ復号化で3.9倍のスピードアップを達成できる。
論文 参考訳(メタデータ) (2024-02-21T11:31:28Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - SpecTr: Fast Speculative Decoding via Optimal Transport [30.18181671899423]
このアルゴリズムはデコーディングの高速化を図り、デコードされた出力に品質劣化がないことを保証します。
提案手法は,最先端の大規模言語モデルに対して,標準的なベンチマーク上での投機的復号化よりもさらに1.37倍の高速化である2.13Xのウォールクロック高速化を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2023-10-23T17:47:34Z) - SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative Inference and Verification [13.174386920965107]
SpecInferは、木に基づく投機的推測と検証を扱う生成的大規模言語モデル(LLM)を高速化するシステムである。
トークンツリーで表される全ての候補トークンシーケンスの正当性を、新しいツリーベースの並列復号機構を用いてLLMに対して並列に検証する。
論文 参考訳(メタデータ) (2023-05-16T20:12:59Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
本稿では,自己回帰(AR)デコーディングを高速化する投機的実行のアイデアを活用するための投機的デコーディング(SpecDec)を提案する。
SpecDecには2つのイノベーションがある。Spec-Drafter - 効率的なドラフトのために特別に最適化された独立モデル、Spec-Verification - ドラフトされたトークンを効率的に検証するための信頼性の高い方法である。
論文 参考訳(メタデータ) (2022-03-30T17:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。