論文の概要: SuffixDecoding: A Model-Free Approach to Speeding Up Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2411.04975v1
- Date: Thu, 07 Nov 2024 18:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:40:23.060779
- Title: SuffixDecoding: A Model-Free Approach to Speeding Up Large Language Model Inference
- Title(参考訳): SuffixDecoding: 大規模言語モデル推論の高速化のためのモデルフリーアプローチ
- Authors: Gabriele Oliaro, Zhihao Jia, Daniel Campos, Aurick Qiao,
- Abstract要約: SuffixDecodingは、投機的復号化を通じて大きな言語モデル(LLM)推論を加速するためのモデルなしのアプローチである。
当社のアプローチは,新たなモデルの維持と編成のオーバーヘッドを伴わずに,柔軟な木構造推測を可能にする。
プロプライエタリなマルチLLMテキスト・ツー・トーケンアプリケーションでは、SuffixDecodingは2.9倍の出力スループットと3倍のレイテンシを実現している。
- 参考スコア(独自算出の注目度): 9.143856130336783
- License:
- Abstract: We present SuffixDecoding, a novel model-free approach to accelerating large language model (LLM) inference through speculative decoding. Unlike existing methods that rely on draft models or specialized decoding heads, SuffixDecoding leverages suffix trees built from previously generated outputs to efficiently predict candidate token sequences. Our approach enables flexible tree-structured speculation without the overhead of maintaining and orchestrating additional models. SuffixDecoding builds and dynamically updates suffix trees to capture patterns in the generated text, using them to construct speculation trees through a principled scoring mechanism based on empirical token frequencies. SuffixDecoding requires only CPU memory which is plentiful and underutilized on typical LLM serving nodes. We demonstrate that SuffixDecoding achieves competitive speedups compared to model-based approaches across diverse workloads including open-domain chat, code generation, and text-to-SQL tasks. For open-ended chat and code generation tasks, SuffixDecoding achieves up to $1.4\times$ higher output throughput than SpecInfer and up to $1.1\times$ lower time-per-token (TPOT) latency. For a proprietary multi-LLM text-to-SQL application, SuffixDecoding achieves up to $2.9\times$ higher output throughput and $3\times$ lower latency than speculative decoding. Our evaluation shows that SuffixDecoding maintains high acceptance rates even with small reference corpora of 256 examples, while continuing to improve performance as more historical outputs are incorporated.
- Abstract(参考訳): 提案するSuffixDecodingは,投機的復号化による大規模言語モデル(LLM)推論を高速化する,新しいモデルフリーアプローチである。
ドラフトモデルや特別なデコードヘッドに依存する既存のメソッドとは異なり、SuffixDecodingは以前に生成された出力から構築された接尾辞木を利用して、候補トークンシーケンスを効率的に予測する。
当社のアプローチは,新たなモデルの維持と編成のオーバーヘッドを伴わずに,柔軟な木構造推測を可能にする。
SuffixDecodingは、サフィックスツリーをビルドし、動的に更新し、生成されたテキストのパターンをキャプチャし、経験的トークン頻度に基づいた原則化されたスコアリングメカニズムを通じて推測ツリーを構築する。
SuffixDecodingはCPUメモリのみを必要とする。
SuffixDecodingは、オープンドメインチャット、コード生成、テキスト・トゥ・SQLタスクなど、さまざまなワークロードにわたるモデルベースのアプローチと比較して、競合的なスピードアップを実現しています。
オープンエンドのチャットやコード生成タスクでは、SuffixDecodingはSpecInferよりも14\times$高い出力スループットを実現し、TPOTレイテンシは1.1\times$低いタイム・パー・トケン(TPOT)である。
プロプライエタリなマルチLLMテキスト-SQLアプリケーションの場合、SuffixDecodingは2.9\times$高出力スループット、$3\times$低レイテンシを実現する。
SuffixDecodingは256例の小さな参照コーパスであっても高い受け入れ率を維持しつつ、より歴史的な出力が組み込まれるにつれて性能を向上し続けていることを示す。
関連論文リスト
- AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration [0.3626013617212667]
本稿では,AMUSD (Asynchronous Multi-device Speculative Decoding) を導入し,ドラフトを分離し,フェーズを検証することによって生成を高速化するシステムを提案する。
AMUSDは、1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機復号法とは異なり、どちらのモデルも別々のデバイス上で独立して予測を行うことができる。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$times$スピードアップを達成したことを示す。
論文 参考訳(メタデータ) (2024-10-22T19:15:35Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding [65.94521678103237]
投機的復号化(英: Speculative decoding)は、大規模言語モデルの生成プロセスを加速する広く使われている手法である。
我々は,草案作成プロセスの並列化のために,草案文を生成するOuroborosを紹介した。
ウロボロは投機的復号化で最大2.8倍、バニラ復号化で3.9倍のスピードアップを達成できる。
論文 参考訳(メタデータ) (2024-02-21T11:31:28Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - SpecTr: Fast Speculative Decoding via Optimal Transport [30.18181671899423]
このアルゴリズムはデコーディングの高速化を図り、デコードされた出力に品質劣化がないことを保証します。
提案手法は,最先端の大規模言語モデルに対して,標準的なベンチマーク上での投機的復号化よりもさらに1.37倍の高速化である2.13Xのウォールクロック高速化を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2023-10-23T17:47:34Z) - SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative Inference and Verification [13.174386920965107]
SpecInferは、木に基づく投機的推測と検証を扱う生成的大規模言語モデル(LLM)を高速化するシステムである。
トークンツリーで表される全ての候補トークンシーケンスの正当性を、新しいツリーベースの並列復号機構を用いてLLMに対して並列に検証する。
論文 参考訳(メタデータ) (2023-05-16T20:12:59Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
本稿では,自己回帰(AR)デコーディングを高速化する投機的実行のアイデアを活用するための投機的デコーディング(SpecDec)を提案する。
SpecDecには2つのイノベーションがある。Spec-Drafter - 効率的なドラフトのために特別に最適化された独立モデル、Spec-Verification - ドラフトされたトークンを効率的に検証するための信頼性の高い方法である。
論文 参考訳(メタデータ) (2022-03-30T17:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。