論文の概要: Quantum speedups in solving near-symmetric optimization problems by low-depth QAOA
- arxiv url: http://arxiv.org/abs/2411.04979v1
- Date: Thu, 07 Nov 2024 18:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:21.057603
- Title: Quantum speedups in solving near-symmetric optimization problems by low-depth QAOA
- Title(参考訳): 低深さQAOAによる近対称最適化問題の量子スピードアップ
- Authors: Ashley Montanaro, Leo Zhou,
- Abstract要約: 低深度量子アルゴリズムによる最適化問題の解法として,指数的量子スピードアップを実現するための新しい技術を提案する。
我々は、対称性を示し、植込み解を含む最適化問題の族に焦点をあてる。
我々は、すべての既知の古典的アルゴリズムが指数時間を必要とするインスタンスを発見する、最先端の古典的解法をベンチマークする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present new advances in achieving exponential quantum speedups for solving optimization problems by low-depth quantum algorithms. Specifically, we focus on families of combinatorial optimization problems that exhibit symmetry and contain planted solutions. We rigorously prove that the 1-step Quantum Approximate Optimization Algorithm (QAOA) can achieve a success probability of $\Omega(1/\sqrt{n})$, and sometimes $\Omega(1)$, for finding the exact solution in many cases. Furthermore, we construct near-symmetric optimization problems by randomly sampling the individual clauses of symmetric problems, and prove that the QAOA maintains a strong success probability in this setting even when the symmetry is broken. Finally, we construct various families of near-symmetric Max-SAT problems and benchmark state-of-the-art classical solvers, discovering instances where all known classical algorithms require exponential time. Therefore, our results indicate that low-depth QAOA could achieve an exponential quantum speedup for optimization problems.
- Abstract(参考訳): 低深度量子アルゴリズムによる最適化問題の解法として,指数的量子スピードアップを実現するための新しい技術を提案する。
具体的には、対称性を示し、植え込み解を含む組合せ最適化問題の族に焦点をあてる。
1ステップの量子近似最適化アルゴリズム(QAOA)が、多くの場合において正確な解を求めるために、$\Omega(1/\sqrt{n})$と$\Omega(1)$を成功確率で達成できることを厳格に証明する。
さらに、対称問題の個々の節をランダムにサンプリングすることにより、準対称最適化問題を構築し、対称性が壊れた場合でも、QAOAが強い成功確率を維持することを証明した。
最後に、準対称なMax-SAT問題の様々なファミリーを構築し、最先端の古典的解法をベンチマークし、すべての既知の古典的アルゴリズムが指数時間を必要とする事例を発見する。
そこで本研究では,QAOAが最適化問題に対して指数的量子スピードアップを達成できることが示唆された。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Quantum Approximate Optimisation for Not-All-Equal SAT [9.427635404752936]
変動量子アルゴリズムのQAOAを、満足度問題(SAT: Not-All-Equal SAT)の変種に適用する。
両ソルバのランタイムは問題サイズとともに指数関数的にスケールするが,QAOAのスケーリングは回路深さが十分に大きい場合に小さくなることを示す。
論文 参考訳(メタデータ) (2024-01-05T15:11:24Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Improving the Quantum Approximate Optimization Algorithm with
postselection [0.0]
組合せ最適化は、短期的およびフォールトトレラントな量子コンピュータに想定される主な応用の1つである。
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は3つの正則グラフ上のMaxCut問題に適用される。
理論上界と下界を導いており、満たされた辺の分数の一定(小さい)増加が実際に達成可能であることを示す。
論文 参考訳(メタデータ) (2020-11-10T22:17:50Z) - Warm-starting quantum optimization [6.832341432995627]
最適化問題の緩和解に対応する初期状態を用いて量子最適化を温める方法について論じる。
これにより、量子アルゴリズムは古典的なアルゴリズムの性能保証を継承することができる。
同じ考えを他のランダム化ラウンドスキームや最適化問題に適用するのは簡単である。
論文 参考訳(メタデータ) (2020-09-21T18:00:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くハイブリッド変分量子古典アルゴリズムである。
我々は,QAOAの反復バージョンを開発し,特定のハードウェア制約に適応することができる。
アルゴリズムをMax-Cutグラフのクラス上でシミュレートし、標準QAOAよりもはるかに高速に収束することを示す。
論文 参考訳(メタデータ) (2020-05-20T18:00:01Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。