論文の概要: Planar Reflection-Aware Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2411.04984v1
- Date: Thu, 07 Nov 2024 18:55:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:25.586662
- Title: Planar Reflection-Aware Neural Radiance Fields
- Title(参考訳): 平面反射型ニューラルラジアンス場
- Authors: Chen Gao, Yipeng Wang, Changil Kim, Jia-Bin Huang, Johannes Kopf,
- Abstract要約: 我々は、窓などの平面反射体を共同でモデル化し、反射光を明示的に鋳造して高周波反射源を捉える反射型NeRFを提案する。
一次光線に沿ってレンダリングすると、きれいで反射のないビューとなり、一方、反射光線に沿って明示的にレンダリングすることで、非常に詳細な反射を再構成することができる。
- 参考スコア(独自算出の注目度): 32.709468082010126
- License:
- Abstract: Neural Radiance Fields (NeRF) have demonstrated exceptional capabilities in reconstructing complex scenes with high fidelity. However, NeRF's view dependency can only handle low-frequency reflections. It falls short when handling complex planar reflections, often interpreting them as erroneous scene geometries and leading to duplicated and inaccurate scene representations. To address this challenge, we introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections. We query a single radiance field to render the primary color and the source of the reflection. We propose a sparse edge regularization to help utilize the true sources of reflections for rendering planar reflections rather than creating a duplicate along the primary ray at the same depth. As a result, we obtain accurate scene geometry. Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections. Our extensive quantitative and qualitative evaluations of real-world datasets demonstrate our method's enhanced performance in accurately handling reflections.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は、複雑なシーンを高い忠実度で再構成する際、例外的な能力を示した。
しかし、NeRFのビュー依存性は低周波反射しか処理できない。
複雑な平面反射を扱う際には不足し、しばしばそれらを誤ったシーンジオメトリとして解釈し、重複したシーン表現と不正確なシーン表現をもたらす。
この課題に対処するために、窓などの平面反射体を共同でモデル化し、反射光を明示的に鋳造して高周波反射源を捉える反射型NeRFを導入する。
我々は、反射の原色と原色を描画するために単一の放射場を問う。
同一深さの一次線に沿って複写を生成するのではなく、平面反射を描画するための真の反射源を利用するためのスパースエッジ正規化を提案する。
その結果,正確なシーン形状が得られた。
一次光線に沿ってレンダリングすると、きれいで反射のないビューとなり、一方、反射光線に沿って明示的にレンダリングすることで、非常に詳細な反射を再構成することができる。
実世界のデータセットの定量的および定性的評価は、リフレクションを正確に処理する際の手法の性能向上を実証する。
関連論文リスト
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - Monocular Identity-Conditioned Facial Reflectance Reconstruction [71.90507628715388]
既存の方法は、顔の反射率モデルを学ぶために、大量の光ステージキャプチャーデータに依存している。
我々は、UV空間ではなく画像空間で反射率を学習し、ID2Reflectanceというフレームワークを提案する。
本フレームワークは,訓練に限られた反射率データを用いながら,単一の画像の反射率マップを直接推定することができる。
論文 参考訳(メタデータ) (2024-03-30T09:43:40Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D
Reconstruction of Complex Scenes with Reflections [92.38975002642455]
大規模な複雑なシーンをリフレクションで再構成できる汎用3次元再構成手法UniSDFを提案する。
提案手法は,複雑な大規模シーンを細部と反射面で頑健に再構築することができる。
論文 参考訳(メタデータ) (2023-12-20T18:59:42Z) - Diffusion Reflectance Map: Single-Image Stochastic Inverse Rendering of Illumination and Reflectance [19.20790327389337]
反射は、物体の外観における照明の周波数スペクトルを束縛する。
本稿では,照明の減衰周波数スペクトルを既知の幾何の物体の反射率とともに復元する第1逆レンダリング法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:50:00Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
本研究は,実環境におけるシングルイメージリフレクション除去(SIRR)の問題に焦点をあてる。
我々は,様々な現実世界のリフレクションシナリオに高度に適用可能な,高度なリフレクション収集パイプラインを考案した。
野生での反射除去(RRW)と呼ばれる大規模で高品質な反射データセットを開発する。
論文 参考訳(メタデータ) (2023-11-29T02:31:10Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
NeRF(Neural Radiance Fields)のような暗黙の表現は、複雑なシーンを細かな詳細でレンダリングするための印象的な結果を示した。
本研究では,NeRF内部のボリュームレンダリングに適した新しいリフレクショントレーシング手法を提案する。
少数の試料から,光線による重要サンプリングと透過率計算の効率的な手法を導出した。
論文 参考訳(メタデータ) (2023-10-16T17:59:56Z) - Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for
Multi-View Reconstruction with Reflection [24.23826907954389]
Ref-NeuSは反射面の効果を減衰させることで曖昧さを減らすことを目的としている。
本研究では,反射面上での高品質な表面再構成を実現し,その精度を高いマージンで向上することを示す。
論文 参考訳(メタデータ) (2023-03-20T03:08:22Z) - NeRFReN: Neural Radiance Fields with Reflections [16.28256369376256]
我々は、NeRF上に構築されたNeRFReNを導入し、リフレクションのあるシーンをモデル化する。
本稿では,シーンを伝送・反射するコンポーネントに分割し,2つのコンポーネントを別個の神経放射場でモデル化することを提案する。
様々な自撮りシーンの実験により,本手法は高品質な新規ビュー合成と物理音響深度推定を達成できることが示されている。
論文 参考訳(メタデータ) (2021-11-30T09:36:00Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
シングルイメージリフレクション除去(SIRR)のためのリフレクション・アウェア・ガイダンス(RAGNet)を用いた新しい2段階ネットワークを提案する。
RAGは、(i)観測からの反射の効果を緩和するために、(ii)線形結合仮説から逸脱する効果を緩和するための部分畳み込みにおいてマスクを生成するために用いられる。
5つの一般的なデータセットの実験は、最先端のSIRR法と比較して、RAGNetの量的および質的な優位性を実証している。
論文 参考訳(メタデータ) (2020-12-02T03:14:57Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
野生の偏光画像からの反射を除去するための新しい定式化法を提案する。
まず、既存のリフレクション除去データセットの不整合問題を同定する。
我々は100種類以上のガラスを用いた新しいデータセットを構築し、得られた透過画像は入力された混合画像と完全に一致している。
論文 参考訳(メタデータ) (2020-03-28T13:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。