論文の概要: Fast and interpretable electricity consumption scenario generation for individual consumers
- arxiv url: http://arxiv.org/abs/2411.05014v1
- Date: Wed, 23 Oct 2024 13:41:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 09:32:57.772830
- Title: Fast and interpretable electricity consumption scenario generation for individual consumers
- Title(参考訳): 個人消費者のための高速かつ解釈可能な電力消費シナリオ生成
- Authors: J. Soenen, A. Yurtman, T. Becker, K. Vanthournout, H. Blockeel,
- Abstract要約: 予測クラスタリング木(PCT)に基づく高速かつ解釈可能なシナリオ生成手法を提案する。
提案手法は, トレーニングや予測において, 少なくとも7倍の精度で, 最先端の時系列を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To enable the transition from fossil fuels towards renewable energy, the low-voltage grid needs to be reinforced at a faster pace and on a larger scale than was historically the case. To efficiently plan reinforcements, one needs to estimate the currents and voltages throughout the grid, which are unknown but can be calculated from the grid layout and the electricity consumption time series of each consumer. However, for many consumers, these time series are unknown and have to be estimated from the available consumer information. We refer to this task as scenario generation. The state-of-the-art approach that generates electricity consumption scenarios is complex, resulting in a computationally expensive procedure with only limited interpretability. To alleviate these drawbacks, we propose a fast and interpretable scenario generation technique based on predictive clustering trees (PCTs) that does not compromise accuracy. In our experiments on three datasets from different locations, we found that our proposed approach generates time series that are at least as accurate as the state-of-the-art while being at least 7 times faster in training and prediction. Moreover, the interpretability of the PCT allows domain experts to gain insight into their data while simultaneously building trust in the predictions of the model.
- Abstract(参考訳): 化石燃料から再生可能エネルギーへの移行を可能にするためには、従来よりも高速で大規模に低電圧グリッドを補強する必要がある。
強化を効率的に計画するには、グリッド全体の電流と電圧を見積もる必要があるが、グリッドレイアウトと各コンシューマの電力消費時間系列から計算することができる。
しかし、多くの消費者にとって、これらの時系列は未知であり、利用可能な消費者情報から推定する必要がある。
このタスクをシナリオ生成と呼ぶ。
電力消費シナリオを生成する最先端のアプローチは複雑であり、計算コストがかかり、解釈性は限られている。
これらの欠点を軽減するために,予測クラスタリング木(PCT)に基づく高速かつ解釈可能なシナリオ生成手法を提案する。
異なる場所から得られた3つのデータセットを実験した結果、提案手法は、トレーニングや予測において少なくとも7倍高速でありながら、最先端技術と同程度の精度の時系列を生成することがわかった。
さらに、PCTの解釈可能性により、ドメインの専門家はモデルの予測に対する信頼を構築しながら、自身のデータに対する洞察を得ることができる。
関連論文リスト
- AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Transfer Learning in Transformer-Based Demand Forecasting For Home
Energy Management System [4.573008040057806]
複数の世帯からのデータを活用して、単一世帯の負荷予測を改善することで、トランスファーラーニングがいかに役立つかを分析する。
具体的には、複数の異なる世帯のデータを用いて高度な予測モデルをトレーニングし、限られたデータを持つ新しい家庭でこのグローバルモデルを微調整する。
得られたモデルは、次の24時間(日頭)の家庭の電力消費を15分間の時間分解能で予測するために使用される。
論文 参考訳(メタデータ) (2023-10-29T21:19:08Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Advanced Statistical Learning on Short Term Load Process Forecasting [13.466565318976887]
短期負荷予測(STLF)は、電力消費者の効率的なスケジューリング、運転最適化取引、意思決定に必要である。
本研究では, ハードタイプデータセットのこれらの課題を管理するための統計非線形モデルを提案し, 最大2日前に15分間の周波数負荷を予測した。
論文 参考訳(メタデータ) (2021-10-19T12:32:40Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
低次元空間における正規化フローを設定する線形主成分分析(PCA)に基づく次元還元フロー層を提案する。
当社は、2013年から2015年までのドイツにおけるPVおよび風力発電のデータと負荷需要に関する主成分フロー(PCF)を訓練しています。
論文 参考訳(メタデータ) (2021-04-21T08:42:54Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
電力需要プロファイルを24時間以内に予測するために,オフライン11とオンライン5の学習アルゴリズムが与える影響を調査した。
最良オフラインアルゴリズムと比較して,オンラインアルゴリズムを用いて平均絶対誤差を30%削減できることを示した。
また,予測精度の大きな誤差は,17年間の投資に不均等な誤差があることを示す。
論文 参考訳(メタデータ) (2021-03-07T11:28:54Z) - Energy consumption forecasting using a stacked nonparametric Bayesian
approach [3.4449150144113254]
複数の時系列データを用いて家庭のエネルギー消費を予測する方法について検討する。
我々は,各タスクに適用された各GPの予測後部を,次のレベルGPの事前および可能性に使用するスタック型GP法を構築する。
いくつかの州にまたがるオーストラリアの世帯のエネルギー消費を予測するために,我々のモデルを実世界のデータセットに適用した。
論文 参考訳(メタデータ) (2020-11-11T02:27:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。