論文の概要: AGE2HIE: Transfer Learning from Brain Age to Predicting Neurocognitive Outcome for Infant Brain Injury
- arxiv url: http://arxiv.org/abs/2411.05188v1
- Date: Thu, 07 Nov 2024 21:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:04.890692
- Title: AGE2HIE: Transfer Learning from Brain Age to Predicting Neurocognitive Outcome for Infant Brain Injury
- Title(参考訳): 小児脳損傷における脳年齢から神経認知的アウトカム予測への転向学習
- Authors: Rina Bao, Sheng He, Ellen Grant, Yangming Ou,
- Abstract要約: 低酸素性虚血性脳症(HIE)は新生児1,000人中1人から5人に影響を及ぼす。
深層学習モデルを用いたHIE関連神経認知結果の早期かつ正確な予測が重要である。
- 参考スコア(独自算出の注目度): 4.561582228399592
- License:
- Abstract: Hypoxic-Ischemic Encephalopathy (HIE) affects 1 to 5 out of every 1,000 newborns, with 30% to 50% of cases resulting in adverse neurocognitive outcomes. However, these outcomes can only be reliably assessed as early as age 2. Therefore, early and accurate prediction of HIE-related neurocognitive outcomes using deep learning models is critical for improving clinical decision-making, guiding treatment decisions and assessing novel therapies. However, a major challenge in developing deep learning models for this purpose is the scarcity of large, annotated HIE datasets. We have assembled the first and largest public dataset, however it contains only 156 cases with 2-year neurocognitive outcome labels. In contrast, we have collected 8,859 normal brain black Magnetic Resonance Imagings (MRIs) with 0-97 years of age that are available for brain age estimation using deep learning models. In this paper, we introduce AGE2HIE to transfer knowledge learned by deep learning models from healthy controls brain MRIs to a diseased cohort, from structural to diffusion MRIs, from regression of continuous age estimation to prediction of the binary neurocognitive outcomes, and from lifespan age (0-97 years) to infant (0-2 weeks). Compared to training from scratch, transfer learning from brain age estimation significantly improves not only the prediction accuracy (3% or 2% improvement in same or multi-site), but also the model generalization across different sites (5% improvement in cross-site validation).
- Abstract(参考訳): 低酸素性虚血性脳症(HIE)は、新生児1,000人中1人から5人に影響し、30%から50%の患者が神経認知に悪影響を及ぼす。
しかし、これらの結果は早ければ2歳までしか確実に評価できない。
したがって、深層学習モデルを用いたHIE関連神経認知結果の早期かつ正確な予測は、臨床意思決定の改善、治療決定の導出、新しい治療法の評価に重要である。
しかし、この目的のためにディープラーニングモデルを開発する上での大きな課題は、大規模で注釈付きHIEデータセットの不足である。
初回, 最大規模の公開データセットを収集したが, 2年間の神経認知結果ラベルを持つ症例は156例のみであった。
対照的に、深層学習モデルを用いて脳年齢推定に利用できる年齢0~97歳の正常脳黒色磁気共鳴画像(MRI)を8,859個収集した。
本稿では,脳MRIから疾患コホート,構造から拡散MRI,連続年齢推定の回帰から二分神経知覚結果の予測,寿命(0~97歳)から乳児(0~2週間)への深層学習モデルによる知識の伝達について紹介する。
スクラッチからのトレーニングと比較すると、脳年齢推定からの移行学習は、予測精度(同一または複数サイトにおける3%または2%の改善)だけでなく、異なるサイトにわたるモデル一般化(クロスサイトバリデーションにおける5%の改善)を大幅に改善する。
関連論文リスト
- Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Does pre-training on brain-related tasks results in better
deep-learning-based brain age biomarkers? [4.114671069824331]
脳年齢予測のための深層学習モデルに対する事前学習段階の影響について検討する。
軽度認知障害およびアルツハイマー病患者の画像から得られた脳年齢バイオマーカーを検証した。
論文 参考訳(メタデータ) (2023-07-11T13:16:04Z) - Deep Learning for Brain Age Estimation: A Systematic Review [41.292656643344294]
機械学習モデルは、脳の年齢を正確に予測するために神経画像データにうまく採用されている。
ディープニューラルネットワーク(ディープニューラルネットワーク、ディープラーニングとも呼ばれる)は、多様体ニューロイメージング研究で普及している。
論文 参考訳(メタデータ) (2022-12-07T15:19:59Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
乳児の脳磁気共鳴画像(MRI)は、ミエリン化以外の特定の発達パターンを示す。
標準化された基準がなければ、3歳前のMRIから脳の構造的成熟度を視覚的に推定することは、サーバ間およびサーバ内変動によって支配される。
我々は、この課題に取り組むための一般的な実現可能性と、2次元および3次元畳み込みニューラルネットワーク(CNN)を含む様々なアプローチの有用性について検討する。
中央軸厚スラブ上に2次元CNNを用いて0.90[95% CI:0.86-0.94]の精度を達成した。
論文 参考訳(メタデータ) (2021-12-27T18:02:48Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
本稿では,畳み込みニューラルネットワークを用いた3次元脳磁気共鳴(MR)画像からの脳年齢回帰の課題に着目した。
予測モデルの性能を損なうことなく、できるだけ多くのノイズを入力に追加することを目的としたノイズモデルを実装した。
本手法は,英国バイオバンクの13750個の脳MR画像を用いて検討し,既存の神経病理学文献と一致している。
論文 参考訳(メタデータ) (2021-08-11T18:08:09Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
T1強調MRIデータから脳年齢を推定するために,新しい3次元畳み込みネットワークである2段エイジネットワーク(TSAN)を提案する。
686ドルのMRIによる実験では、TSANが正確な脳年齢を推定できることが示された。
論文 参考訳(メタデータ) (2021-06-06T07:11:25Z) - Neurodevelopmental Age Estimation of Infants Using a 3D-Convolutional
Neural Network Model based on Fusion MRI Sequences [0.08341869765517104]
脳が正常に発達しているかどうかを判断する能力は、小児神経放射線学と神経学の重要な要素である。
3次元畳み込みニューラルネットワーク(3D CNN)を用いて,脳の発達年齢を共通MRIを用いて迅速に分類した。
論文 参考訳(メタデータ) (2020-10-07T01:24:15Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。