論文の概要: Brain Ageing Prediction using Isolation Forest Technique and Residual Neural Network (ResNet)
- arxiv url: http://arxiv.org/abs/2412.19017v1
- Date: Thu, 26 Dec 2024 01:49:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:39.741685
- Title: Brain Ageing Prediction using Isolation Forest Technique and Residual Neural Network (ResNet)
- Title(参考訳): 孤立林技術と残留ニューラルネットワーク(ResNet)を用いた脳老化予測
- Authors: Saadat Behzadi, Danial Sharifrazi, Roohallah Alizadehsani, Mojtaba Lotfaliany, Mohammadreza Mohebbi,
- Abstract要約: 本稿では,Residual Neural Network 101 Version 2 (ResNet101V2) モデルを用いた新しいディープラーニング手法を提案する。
提案したモデルをトレーニングし、検証し、テストするために、ICBM(International Consortium for Brain Mapping)からランダムに選択された2102画像の大規模なデータセットを使用した。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License:
- Abstract: Brain aging is a complex and dynamic process, leading to functional and structural changes in the brain. These changes could lead to the increased risk of neurodegenerative diseases and cognitive decline. Accurate brain-age estimation utilizing neuroimaging data has become necessary for detecting initial signs of neurodegeneration. Here, we propose a novel deep learning approach using the Residual Neural Network 101 Version 2 (ResNet101V2) model to predict brain age from MRI scans. To train, validate and test our proposed model, we used a large dataset of 2102 images which were selected randomly from the International Consortium for Brain Mapping (ICBM). Next, we applied data preprocessing techniques, including normalizing the images and using outlier detection via Isolation Forest method. Then, we evaluated various pre-trained approaches (namely: MobileNetV2, ResNet50V2, ResNet101V2, Xception). The results demonstrated that the ResNet101V2 model has higher performance compared with the other models, attaining MAEs of 0.9136 and 0.8242 years for before and after using Isolation Forest process. Our method achieved a high accuracy in brain age estimation in ICBM dataset and it provides a reliable brain age prediction.
- Abstract(参考訳): 脳の老化は複雑で動的なプロセスであり、脳の機能的および構造的変化を引き起こす。
これらの変化は神経変性疾患のリスクの増加と認知低下につながる可能性がある。
神経変性の最初の兆候を検出するためには,脳画像データを用いた正確な脳年齢推定が必要である。
本稿では,Residual Neural Network 101 Version 2 (ResNet101V2) モデルを用いた新しいディープラーニング手法を提案する。
提案したモデルをトレーニング,検証,テストするために,ICBM(International Consortium for Brain Mapping)からランダムに選択された2102画像の大規模なデータセットを使用した。
次に、画像の正規化やアイソレーションフォレスト法による異常検出など、データ前処理手法を適用した。
次に、事前学習した様々なアプローチ(MobileNetV2、ResNet50V2、ResNet101V2、Xception)を評価した。
その結果、ResNet101V2モデルは他のモデルと比較して高い性能を示し、分離森林プロセスの前後のMAEは0.9136年と0.8242年である。
ICBMデータセットでは,脳年齢推定の精度が向上し,信頼性の高い脳年齢予測が可能となった。
関連論文リスト
- AGE2HIE: Transfer Learning from Brain Age to Predicting Neurocognitive Outcome for Infant Brain Injury [4.561582228399592]
低酸素性虚血性脳症(HIE)は新生児1,000人中1人から5人に影響を及ぼす。
深層学習モデルを用いたHIE関連神経認知結果の早期かつ正確な予測が重要である。
論文 参考訳(メタデータ) (2024-11-07T21:24:54Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
我々は、訓練段階におけるコンパクトモデルにおいて、ニューロン数を漸進的に増加させる新しいアプローチを探求する。
本稿では,ニューロン類似性分布に基づく制約を導入することにより,特徴抽出バイアスと神経冗長性を低減する手法を提案する。
CIFAR-10とCIFAR-100データセットの結果、精度が向上した。
論文 参考訳(メタデータ) (2024-08-23T11:16:37Z) - Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
本稿では,脳病変分割モデルのトレーニングのための新しいサンプルを効率よく生成するフレームワークを提案する。
まず, 対向型自己エンコーダに基づく病変発生器を自己管理的に訓練する。
次に,新しい画像合成アルゴリズムであるSoft Poisson Blendingを用いて,合成病変と脳画像のシームレスな結合を行う。
論文 参考訳(メタデータ) (2024-06-21T01:53:12Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
我々は最近,サンプル共分散行列で動作する共分散ニューラルネットワーク(VNN)について検討した。
本稿では,大脳皮質厚みデータを用いた脳年齢推定におけるVNNの有用性を示す。
以上の結果から、VNNは脳年齢推定のためのマルチスケールおよびマルチサイト転送性を示すことが明らかとなった。
アルツハイマー病(AD)の脳年齢の文脈では,健常者に対してVNNを用いて予測される脳年齢がADに対して有意に上昇していることから,VNNの出力は解釈可能であることが示された。
論文 参考訳(メタデータ) (2022-10-28T18:58:34Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Predi\c{c}\~ao da Idade Cerebral a partir de Imagens de Resson\^ancia
Magn\'etica utilizando Redes Neurais Convolucionais [57.52103125083341]
磁気共鳴画像を用いた脳年齢予測のための深層学習手法について検討した。
バイオマーカーの同定は、早期の神経変性過程の検出、および年齢または非年齢に関する認知低下の予測に有用である。
最も優れた結果は、平均絶対誤差3.83年を達成した2Dモデルによって得られた。
論文 参考訳(メタデータ) (2021-12-23T14:51:45Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
脳の磁気共鳴イメージング(MRI)データに基づく年齢予測は、脳疾患や老化の進行を定量化するバイオマーカーである。
現在のアプローチでは、voxelを標準化された脳アトラスに登録するなど、複数の前処理ステップでデータを準備する。
ここでは、ResNetアーキテクチャに基づく3D Convolutional Neural Network(CNN)について、未登録のT1重み付きMRIデータに基づいてトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T09:48:34Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。