Differentiable Calibration of Inexact Stochastic Simulation Models via Kernel Score Minimization
- URL: http://arxiv.org/abs/2411.05315v1
- Date: Fri, 08 Nov 2024 04:13:52 GMT
- Title: Differentiable Calibration of Inexact Stochastic Simulation Models via Kernel Score Minimization
- Authors: Ziwei Su, Diego Klabjan,
- Abstract summary: We propose to learn differentiable input parameters of simulation models using output-level data via kernel score minimization with gradient descent.
We quantify the uncertainties of the learned input parameters using a new normality result that accounts for model inexactness.
- Score: 11.955062839855334
- License:
- Abstract: Stochastic simulation models are generative models that mimic complex systems to help with decision-making. The reliability of these models heavily depends on well-calibrated input model parameters. However, in many practical scenarios, only output-level data are available to learn the input model parameters, which is challenging due to the often intractable likelihood of the stochastic simulation model. Moreover, stochastic simulation models are frequently inexact, with discrepancies between the model and the target system. No existing methods can effectively learn and quantify the uncertainties of input parameters using only output-level data. In this paper, we propose to learn differentiable input parameters of stochastic simulation models using output-level data via kernel score minimization with stochastic gradient descent. We quantify the uncertainties of the learned input parameters using a frequentist confidence set procedure based on a new asymptotic normality result that accounts for model inexactness. The proposed method is evaluated on exact and inexact G/G/1 queueing models.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Context-specific kernel-based hidden Markov model for time series
analysis [9.007829035130886]
We introduce a new hidden Markov model based on kernel density estimation.
It is capable of capturing kernel dependencies using context-specific Bayesian networks.
The benefits in likelihood and classification accuracy from the proposed model are quantified and analyzed.
arXiv Detail & Related papers (2023-01-24T09:10:38Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
We develop a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees.
We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator.
arXiv Detail & Related papers (2021-05-27T00:59:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.