Exploring the Alignment Landscape: LLMs and Geometric Deep Models in Protein Representation
- URL: http://arxiv.org/abs/2411.05316v1
- Date: Fri, 08 Nov 2024 04:15:08 GMT
- Title: Exploring the Alignment Landscape: LLMs and Geometric Deep Models in Protein Representation
- Authors: Dong Shu, Bingbing Duan, Kai Guo, Kaixiong Zhou, Jiliang Tang, Mengnan Du,
- Abstract summary: Latent representation alignment is used to map embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs)
Preliminary protein-focused large language models (MLLMs) have emerged, but they have predominantly relied on approaches lacking a fundamental understanding of optimal alignment practices across representations.
In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain.
Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process.
- Score: 57.59506688299817
- License:
- Abstract: Latent representation alignment has become a foundational technique for constructing multimodal large language models (MLLM) by mapping embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs) to enable effective cross-modal understanding. While preliminary protein-focused MLLMs have emerged, they have predominantly relied on heuristic approaches, lacking a fundamental understanding of optimal alignment practices across representations. In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain. We comprehensively evaluate three state-of-the-art LLMs (Gemma2-2B, LLaMa3.1-8B, and LLaMa3.1-70B) with four protein-specialized GDMs (GearNet, GVP, ScanNet, GAT). Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process. Our key findings reveal that GDMs incorporating both graph and 3D structural information align better with LLMs, larger LLMs demonstrate improved alignment capabilities, and protein rarity significantly impacts alignment performance. We also find that increasing GDM embedding dimensions, using two-layer projection heads, and fine-tuning LLMs on protein-specific data substantially enhance alignment quality. These strategies offer potential enhancements to the performance of protein-related multimodal models. Our code and data are available at https://github.com/Tizzzzy/LLM-GDM-alignment.
Related papers
- FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data [64.50893177169996]
Fine-tuning Multimodal Large Language Models (MLLMs) with Federated Learning (FL) allows for expanding the training data scope by including private data sources.
We introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios.
We develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies.
arXiv Detail & Related papers (2024-11-22T04:09:23Z) - Advancing Fine-Grained Visual Understanding with Multi-Scale Alignment in Multi-Modal Models [11.151736352865921]
We introduce a novel fine-grained visual knowledge alignment method.
This method integrates multi-scale knowledge of objects, including texts, coordinates, and images.
We also present TinyGroundingGPT, a series of compact models optimized for high-level alignments.
arXiv Detail & Related papers (2024-11-14T18:57:07Z) - Understanding Layer Significance in LLM Alignment [23.582520695083588]
We propose a novel approach to identify the important layers for LLM alignment (ILA)
ILA consistently identifies important layers across various alignment datasets, with nearly 90% overlap even with substantial dataset differences.
Experimental results indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
arXiv Detail & Related papers (2024-10-23T13:47:05Z) - Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
Graph representation learning is crucial for real-world applications but often encounters pervasive noise.
We introduce LangGSL, a framework that integrates the complementary strengths of pre-trained language models and graph structure learning models.
arXiv Detail & Related papers (2024-10-15T22:43:32Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.
MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.
Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Understanding Alignment in Multimodal LLMs: A Comprehensive Study [46.33812471516309]
We analyze each aspect of preference alignment in Multimodal Large Language Models (MLLMs)
We show that combining offline and online methods can improve the performance of the model in certain scenarios.
We introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS)
arXiv Detail & Related papers (2024-07-02T17:55:03Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.