Understanding Layer Significance in LLM Alignment
- URL: http://arxiv.org/abs/2410.17875v1
- Date: Wed, 23 Oct 2024 13:47:05 GMT
- Title: Understanding Layer Significance in LLM Alignment
- Authors: Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, Xiao-Ming Wu,
- Abstract summary: We propose a novel approach to identify the important layers for LLM alignment (ILA)
ILA consistently identifies important layers across various alignment datasets, with nearly 90% overlap even with substantial dataset differences.
Experimental results indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
- Score: 23.582520695083588
- License:
- Abstract: Aligning large language models (LLMs) through fine-tuning is essential for tailoring them to specific applications. Therefore, understanding what LLMs learn during the alignment process is crucial. Recent studies suggest that alignment primarily adjusts a model's presentation style rather than its foundational knowledge, indicating that only certain components of the model are significantly impacted. To delve deeper into LLM alignment, we propose to identify which layers within LLMs are most critical to the alignment process, thereby uncovering how alignment influences model behavior at a granular level. We propose a novel approach to identify the important layers for LLM alignment (ILA). It involves learning a binary mask for each incremental weight matrix in the LoRA algorithm, indicating the significance of each layer. ILA consistently identifies important layers across various alignment datasets, with nearly 90% overlap even with substantial dataset differences, highlighting fundamental patterns in LLM alignment. Experimental results indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
Related papers
- Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks.
To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions.
arXiv Detail & Related papers (2024-11-17T01:16:37Z) - Exploring the Alignment Landscape: LLMs and Geometric Deep Models in Protein Representation [57.59506688299817]
Latent representation alignment is used to map embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs)
Preliminary protein-focused large language models (MLLMs) have emerged, but they have predominantly relied on approaches lacking a fundamental understanding of optimal alignment practices across representations.
In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain.
Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process.
arXiv Detail & Related papers (2024-11-08T04:15:08Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - Investigating Layer Importance in Large Language Models [28.156622049937216]
Large language models (LLMs) have gained increasing attention due to their prominent ability to understand and process texts.
The lack of understanding of LLMs has obstructed the deployment in safety-critical scenarios and hindered the development of better models.
This study identifies cornerstone layers in LLMs and underscores their critical role for future research.
arXiv Detail & Related papers (2024-09-22T09:53:13Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Understanding Alignment in Multimodal LLMs: A Comprehensive Study [46.33812471516309]
We analyze each aspect of preference alignment in Multimodal Large Language Models (MLLMs)
We show that combining offline and online methods can improve the performance of the model in certain scenarios.
We introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS)
arXiv Detail & Related papers (2024-07-02T17:55:03Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
A recent study, LIMA, shows that using merely 1K examples for alignment tuning can achieve significant alignment performance as well.
This raises questions about how exactly the alignment tuning transforms a base LLM.
We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting.
arXiv Detail & Related papers (2023-12-04T00:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.