Research on Edge Computing and Cloud Collaborative Resource Scheduling Optimization Based on Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.18773v1
- Date: Wed, 26 Feb 2025 03:05:11 GMT
- Title: Research on Edge Computing and Cloud Collaborative Resource Scheduling Optimization Based on Deep Reinforcement Learning
- Authors: Yuqing Wang, Xiao Yang,
- Abstract summary: This study addresses the challenge of resource scheduling optimization in edge-cloud collaborative computing using deep reinforcement learning (DRL)<n>The proposed DRL-based approach improves task processing efficiency, reduces overall processing time, enhances resource utilization, and effectively controls task migrations.
- Score: 11.657154571216234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study addresses the challenge of resource scheduling optimization in edge-cloud collaborative computing using deep reinforcement learning (DRL). The proposed DRL-based approach improves task processing efficiency, reduces overall processing time, enhances resource utilization, and effectively controls task migrations. Experimental results demonstrate the superiority of DRL over traditional scheduling algorithms, particularly in managing complex task allocation, dynamic workloads, and multiple resource constraints. Despite its advantages, further improvements are needed to enhance learning efficiency, reduce training time, and address convergence issues. Future research should focus on increasing the algorithm's fault tolerance to handle more complex and uncertain scheduling scenarios, thereby advancing the intelligence and efficiency of edge-cloud computing systems.
Related papers
- Dynamic Operating System Scheduling Using Double DQN: A Reinforcement Learning Approach to Task Optimization [2.2045629562818085]
Experimental results show that the Double DQN algorithm has high scheduling performance under light load, medium load and heavy load scenarios.
The algorithm also shows high optimization ability in resource utilization and can intelligently adjust resource allocation according to the system state.
Future studies will explore the application of the algorithm in more complex systems, especially cloud computing and large-scale distributed environments.
arXiv Detail & Related papers (2025-03-31T01:48:21Z) - Deep Reinforcement Learning for Job Scheduling and Resource Management in Cloud Computing: An Algorithm-Level Review [10.015735252600793]
Deep Reinforcement Learning (DRL) has emerged as a promising solution to these challenges.<n>DRL enables systems to learn and adapt policies based on continuous observations of the environment.<n>This survey provides a comprehensive review of DRL-based algorithms for job scheduling and resource management in cloud computing.
arXiv Detail & Related papers (2025-01-02T02:08:00Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.<n>Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning.
By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization.
This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption.
arXiv Detail & Related papers (2024-11-08T05:58:09Z) - Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
We propose a Curiosity-driven Unsupervised Data Collection (CUDC) method to expand feature space using adaptive temporal distances for task-agnostic data collection.
With this adaptive reachability mechanism in place, the feature representation can be diversified, and the agent can navigate itself to collect higher-quality data with curiosity.
Empirically, CUDC surpasses existing unsupervised methods in efficiency and learning performance in various downstream offline RL tasks of the DeepMind control suite.
arXiv Detail & Related papers (2023-12-19T14:26:23Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
This paper presents a comprehensive review of the application of Deep Reinforcement Learning (DRL) techniques in serverless computing.
A systematic review of recent studies applying DRL to serverless computing is presented, covering various algorithms, models, and performances.
Our analysis reveals that DRL, with its ability to learn and adapt from an environment, shows promising results in improving the efficiency of function scheduling and resource scaling.
arXiv Detail & Related papers (2023-10-05T09:26:04Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.