RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
- URL: http://arxiv.org/abs/2411.05354v1
- Date: Fri, 08 Nov 2024 06:19:29 GMT
- Title: RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
- Authors: Xingyu Ai, Bin Huang, Fang Chen, Liu Shi, Binxuan Li, Shaoyu Wang, Qiegen Liu,
- Abstract summary: We propose a diffusion model named residual esti-mation diffusion (RED)
From the perspective of diffusion mechanism, RED uses the residual between sinograms to replace Gaussian noise in diffusion process.
Experiments show that RED effec-tively improves the quality of low-dose sinograms as well as the reconstruction results.
- Score: 8.152999560646371
- License:
- Abstract: Recent advances in diffusion models have demonstrated exceptional performance in generative tasks across vari-ous fields. In positron emission tomography (PET), the reduction in tracer dose leads to information loss in sino-grams. Using diffusion models to reconstruct missing in-formation can improve imaging quality. Traditional diffu-sion models effectively use Gaussian noise for image re-constructions. However, in low-dose PET reconstruction, Gaussian noise can worsen the already sparse data by introducing artifacts and inconsistencies. To address this issue, we propose a diffusion model named residual esti-mation diffusion (RED). From the perspective of diffusion mechanism, RED uses the residual between sinograms to replace Gaussian noise in diffusion process, respectively sets the low-dose and full-dose sinograms as the starting point and endpoint of reconstruction. This mechanism helps preserve the original information in the low-dose sinogram, thereby enhancing reconstruction reliability. From the perspective of data consistency, RED introduces a drift correction strategy to reduce accumulated prediction errors during the reverse process. Calibrating the inter-mediate results of reverse iterations helps maintain the data consistency and enhances the stability of reconstruc-tion process. Experimental results show that RED effec-tively improves the quality of low-dose sinograms as well as the reconstruction results. The code is available at: https://github.com/yqx7150/RED.
Related papers
- Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction [0.09362267584678274]
Low-dose positron emission tomography (PET) image reconstruction methods have potential to significantly improve PET as an imaging modality.
Deep learning provides a promising means of incorporating prior information into the image reconstruction problem to produce quantitatively accurate images from compromised signal.
We present a method which explicitly models deep latent space features using a robust kernel representation, providing robust performance on previously unseen dose reduction factors.
arXiv Detail & Related papers (2024-09-10T03:57:31Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations.
We propose an Iterative Token Evaluation and Refinement framework for RWSR.
We show that ITER is easier to train than Generative Adversarial Networks (GANs) and more efficient than continuous diffusion models.
arXiv Detail & Related papers (2023-12-09T17:07:32Z) - Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise [34.65659277870287]
Research on denoising diffusion models has expanded its application to the field of image restoration.
We propose Resfusion, a framework that incorporates the residual term into the diffusion forward process.
We show that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps.
arXiv Detail & Related papers (2023-11-25T02:09:38Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration [39.071637725773314]
We propose a coarse-to-fine diffusion Transformer (C2F-DFT) for image restoration.
C2F-DFT contains diffusion self-attention (DFSA) and diffusion feed-forward network (DFN)
In the coarse training stage, our C2F-DFT estimates noises and then generates the final clean image by a sampling algorithm.
arXiv Detail & Related papers (2023-08-17T01:59:59Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepRED is a typical representation that combines DIP and regularization by denoising (RED)
In this article, we leverage DeepRED from a Bayesian perspective to reconstruct PET images from a single corrupted sinogram without any supervised or auxiliary information.
arXiv Detail & Related papers (2021-10-29T06:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.