論文の概要: Enabling Automatic Repair of Source Code Vulnerabilities Using
Data-Driven Methods
- arxiv url: http://arxiv.org/abs/2202.03055v1
- Date: Mon, 7 Feb 2022 10:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 00:47:12.487377
- Title: Enabling Automatic Repair of Source Code Vulnerabilities Using
Data-Driven Methods
- Title(参考訳): データ駆動手法によるソースコード脆弱性の自動修復
- Authors: Anastasiia Grishina
- Abstract要約: 3つの観点から脆弱性修復のためのコード表現を改善する方法を提案する。
データ駆動型の自動プログラム修復モデルは、バグと修正されたコードのペアを使用して、コードのエラーを修正する変換を学習する。
この作業の期待される結果は、自動プログラム修正のためのコード表現の改善、特にセキュリティ脆弱性の修正である。
- 参考スコア(独自算出の注目度): 0.4568777157687961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Users around the world rely on software-intensive systems in their day-to-day
activities. These systems regularly contain bugs and security vulnerabilities.
To facilitate bug fixing, data-driven models of automatic program repair use
pairs of buggy and fixed code to learn transformations that fix errors in code.
However, automatic repair of security vulnerabilities remains under-explored.
In this work, we propose ways to improve code representations for vulnerability
repair from three perspectives: input data type, data-driven models, and
downstream tasks. The expected results of this work are improved code
representations for automatic program repair and, specifically, fixing security
vulnerabilities.
- Abstract(参考訳): 世界中のユーザは、日々の活動においてソフトウェア集約的なシステムに依存しています。
これらのシステムには定期的にバグやセキュリティ上の脆弱性が含まれている。
バグ修正を容易にするために、自動プログラム修正のデータ駆動モデルは、バグと修正コードのペアを使用して、コードのエラーを修正する変換を学ぶ。
しかし、セキュリティ脆弱性の自動修復は未検討のままである。
本研究では,入力データ型,データ駆動モデル,ダウンストリームタスクという3つの視点から脆弱性修復のためのコード表現を改善する手法を提案する。
この作業の期待される結果は、自動プログラム修正のためのコード表現の改善、特にセキュリティ脆弱性の修正である。
関連論文リスト
- Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Automatic Programming: Large Language Models and Beyond [48.34544922560503]
我々は,プログラマの責任に関するコード品質,セキュリティ,関連する問題について検討する。
ソフトウェア工学の進歩が自動プログラミングを実現する方法について論じる。
我々は、近い将来のプログラミング環境に焦点をあてて、先見的な視点で締めくくります。
論文 参考訳(メタデータ) (2024-05-03T16:19:24Z) - Causative Insights into Open Source Software Security using Large
Language Code Embeddings and Semantic Vulnerability Graph [3.623199159688412]
オープンソースソフトウェア(OSS)の脆弱性は、不正アクセス、データ漏洩、ネットワーク障害、プライバシー侵害を引き起こす可能性がある。
最近のディープラーニング技術は、ソースコードの脆弱性を特定し、ローカライズする上で大きな可能性を示しています。
本研究は,従来の方法に比べてコード修復能力が24%向上したことを示す。
論文 参考訳(メタデータ) (2024-01-13T10:33:22Z) - Enhanced Automated Code Vulnerability Repair using Large Language Models [0.0]
この研究は、コードの脆弱性を自動修復する複雑な課題に対処する。
LLM(Advanced Large Language Models)を使用して、コード修正を表現する新しいフォーマットを導入する。
Cコードの脆弱性を特徴とするデータセットを微調整したLLMは、自動コード修復技術の正確性と適応性を大幅に向上した。
論文 参考訳(メタデータ) (2024-01-08T09:01:29Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
本稿では,REal-world vulnErabilities and Fixesをオープンソースリポジトリから収集するための自動収集フレームワークREEFを提案する。
脆弱性とその修正を収集する多言語クローラを開発し、高品質な脆弱性修正ペアをフィルタするためのメトリクスを設計する。
大規模な実験を通じて,我々の手法が高品質な脆弱性修正ペアを収集し,強力な説明を得られることを示す。
論文 参考訳(メタデータ) (2023-09-15T02:50:08Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Neural Transfer Learning for Repairing Security Vulnerabilities in C
Code [14.664825927959644]
本稿では,転送学習に基づくVRepairというセキュリティ脆弱性の修復手法を提案する。
VRepairは最初、大規模なバグ修正コーパスでトレーニングされ、次に脆弱性修正データセットにチューニングされる。
私たちの実験では、バグフィックスコーパスでのみトレーニングされたモデルが、すでにいくつかの脆弱性を修正できることを示しました。
論文 参考訳(メタデータ) (2021-04-16T18:32:51Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。