論文の概要: Free Record-Level Privacy Risk Evaluation Through Artifact-Based Methods
- arxiv url: http://arxiv.org/abs/2411.05743v1
- Date: Fri, 08 Nov 2024 18:04:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:35.846971
- Title: Free Record-Level Privacy Risk Evaluation Through Artifact-Based Methods
- Title(参考訳): アーチファクトに基づくフリー記録レベルプライバシリスク評価
- Authors: Joseph Pollock, Igor Shilov, Euodia Dodd, Yves-Alexandre de Montjoye,
- Abstract要約: 本稿では,トレーニング中に利用可能な人工物のみを用いて,リスクの高いサンプルを識別する新しい手法を提案する。
本手法は, サンプルごとの損失トレースを分析し, 脆弱なデータサンプルを同定する。
- 参考スコア(独自算出の注目度): 6.902279764206365
- License:
- Abstract: Membership inference attacks (MIAs) are widely used to empirically assess the privacy risks of samples used to train a target machine learning model. State-of-the-art methods however require training hundreds of shadow models, with the same size and architecture of the target model, solely to evaluate the privacy risk. While one might be able to afford this for small models, the cost often becomes prohibitive for medium and large models. We here instead propose a novel approach to identify the at-risk samples using only artifacts available during training, with little to no additional computational overhead. Our method analyzes individual per-sample loss traces and uses them to identify the vulnerable data samples. We demonstrate the effectiveness of our artifact-based approach through experiments on the CIFAR10 dataset, showing high precision in identifying vulnerable samples as determined by a SOTA shadow model-based MIA (LiRA). Impressively, our method reaches the same precision as another SOTA MIA when measured against LiRA, despite it being orders of magnitude cheaper. We then show LT-IQR to outperform alternative loss aggregation methods, perform ablation studies on hyperparameters, and validate the robustness of our method to the target metric. Finally, we study the evolution of the vulnerability score distribution throughout training as a metric for model-level risk assessment.
- Abstract(参考訳): メンバーシップ推論攻撃(MIA)は、ターゲット機械学習モデルのトレーニングに使用されるサンプルのプライバシーリスクを実証的に評価するために広く使用されている。
しかし最先端の手法では、プライバシーリスクを評価するためだけに、ターゲットモデルのサイズとアーキテクチャが同じである数百のシャドウモデルをトレーニングする必要がある。
小型モデルでこれを買うことができるかもしれないが、中型モデルや大型モデルではコストが禁じられることがしばしばある。
ここでは、トレーニング中に利用可能なアーティファクトのみを使用して、追加の計算オーバーヘッドを伴わずに、リスクの高いサンプルを識別する新しいアプローチを提案する。
本手法は, サンプルごとの損失トレースを分析し, 脆弱なデータサンプルを同定する。
CIFAR10データセットを用いた実験により,SOTAシャドウモデルを用いたMIA(LiRA)により決定された脆弱性サンプルの同定精度が向上した。
また,LiRAに対して測定した場合のSOTA MIAと同等の精度を達成できた。
次に、LT-IQRは、代替損失集計法よりも優れた性能を示し、ハイパーパラメーターのアブレーション研究を行い、ターゲットメトリックに対する我々の手法のロバスト性を検証する。
最後に、モデルレベルのリスク評価の指標として、トレーニングを通しての脆弱性スコア分布の進化について検討する。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Low-Cost High-Power Membership Inference Attacks [15.240271537329534]
メンバーシップ推論攻撃は、特定のデータポイントがモデルのトレーニングに使用されたかどうかを検出することを目的としている。
我々は,計算オーバーヘッドの少ない,堅牢なメンバシップ推論攻撃を行うための新しい統計的試験を設計する。
RMIAは、機械学習における実用的かつ正確なデータプライバシーリスク評価の基礎を成している。
論文 参考訳(メタデータ) (2023-12-06T03:18:49Z) - SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
モデル抽出は、代替モデル上で逆例を生成することによって、ターゲットモデルを騙す。
本稿では,偽データの合成におけるクラス間およびクラス内多様性を考慮した,SCME という新しいデータフリーモデル抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T10:41:45Z) - Beyond Labeling Oracles: What does it mean to steal ML models? [52.63413852460003]
モデル抽出攻撃は、クエリアクセスのみで訓練されたモデルを盗むように設計されている。
モデル抽出攻撃の成功に影響を及ぼす要因について検討する。
我々は,ME攻撃の敵の目標を再定義するようコミュニティに促した。
論文 参考訳(メタデータ) (2023-10-03T11:10:21Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
モデルアタック(MIA)は、深層学習モデルの到達不可能なトレーニングセットからプライベートデータを復元することを目的としている。
そこで本研究では,条件拡散モデル(CDM)を応用したMIA手法を開発し,対象ラベル下でのサンプルの回収を行う。
実験結果から,本手法は従来手法よりも高い精度で類似したサンプルをターゲットラベルに生成できることが示唆された。
論文 参考訳(メタデータ) (2023-07-17T12:14:24Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - Leveraging Adversarial Examples to Quantify Membership Information
Leakage [30.55736840515317]
パターン認識モデルにおけるメンバシップ推論の問題に対処する新しいアプローチを開発する。
この量はトレーニングデータに属する可能性を反映していると我々は主張する。
我々の手法は、最先端の戦略に匹敵する、あるいは上回る性能を発揮する。
論文 参考訳(メタデータ) (2022-03-17T19:09:38Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。