What is Metaheuristics? A Primer for the Epidemiologists
- URL: http://arxiv.org/abs/2411.05797v1
- Date: Sat, 26 Oct 2024 02:13:00 GMT
- Title: What is Metaheuristics? A Primer for the Epidemiologists
- Authors: Elvis Han Cui, Haowen Xu, Weng Kee Wong,
- Abstract summary: This paper reviews the basic BAT algorithm and its variants, including their applications in various fields.
As a specific application, we apply the BAT algorithm to a biostatistical estimation problem and show it has some clear advantages over existing algorithms.
- Score: 1.2783241540121182
- License:
- Abstract: Optimization plays an important role in tackling public health problems. Animal instincts can be used effectively to solve complex public health management issues by providing optimal or approximately optimal solutions to complicated optimization problems common in public health. BAT algorithm is an exemplary member of a class of nature-inspired metaheuristic optimization algorithms and designed to outperform existing metaheuristic algorithms in terms of efficiency and accuracy. It's inspiration comes from the foraging behavior of group of microbats that use echolocation to find their target in the surrounding environment. In recent years, BAT algorithm has been extensively used by researchers in the area of optimization, and various variants of BAT algorithm have been developed to improve its performance and extend its application to diverse disciplines. This paper first reviews the basic BAT algorithm and its variants, including their applications in various fields. As a specific application, we apply the BAT algorithm to a biostatistical estimation problem and show it has some clear advantages over existing algorithms.
Related papers
- BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems [0.5755004576310334]
Two simple yet powerful optimization algorithms, named the Best-MeanRandom (BMR) and Best-Worst-Random (BWR) algorithms, are developed and presented in this paper.
arXiv Detail & Related papers (2024-07-15T18:11:47Z) - The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems [3.2432648012273346]
The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problems.
To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms.
The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
arXiv Detail & Related papers (2024-06-01T18:38:59Z) - GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond [4.939986309170004]
The GOOSE algorithm is benchmarked on 19 well-known test functions.
The proposed algorithm is tested on 10 modern benchmark functions.
The achieved findings attest to the proposed algorithm's superior performance.
arXiv Detail & Related papers (2023-07-19T19:14:25Z) - Perfectionism Search Algorithm (PSA): An Efficient Meta-Heuristic
Optimization Approach [0.0]
This paper proposes a novel population-based meta-heuristic optimization algorithm, called Perfectionism Search Algorithm (PSA)
The PSA algorithm takes inspiration from one of the most popular model of perfectionism, which was proposed by Hewitt and Flett.
The obtained results confirm the high performance of the proposed algorithm in comparison to the other well-known algorithms.
arXiv Detail & Related papers (2023-04-22T22:06:31Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
Batch policy optimization considers leveraging existing data for policy construction before interacting with an environment.
We show that any confidence-adjusted index algorithm is minimax optimal, whether it be optimistic, pessimistic or neutral.
We introduce a new weighted-minimax criterion that considers the inherent difficulty of optimal value prediction.
arXiv Detail & Related papers (2021-04-06T05:23:20Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.