Demo: Multi-Modal Seizure Prediction System
- URL: http://arxiv.org/abs/2411.05817v2
- Date: Fri, 15 Nov 2024 18:36:30 GMT
- Title: Demo: Multi-Modal Seizure Prediction System
- Authors: Ali Saeizadeh, Pietro Brach del Prever, Douglas Schonholtz, Raffaele Guida, Emrecan Demirors, Jorge M. Jimenez, Pedram Johari, Tommaso Melodia,
- Abstract summary: SeizNet is an innovative system for predicting epileptic seizures benefiting from a multi-modal sensor network.
Epilepsy affects approximately 65 million people worldwide, many of whom experience drug-resistant seizures.
SeizNet achieves > 97% accuracy in seizure prediction while keeping the size and energy restrictions of an implantable device.
- Score: 9.940843218393198
- License:
- Abstract: This demo presents SeizNet, an innovative system for predicting epileptic seizures benefiting from a multi-modal sensor network and utilizing Deep Learning (DL) techniques. Epilepsy affects approximately 65 million people worldwide, many of whom experience drug-resistant seizures. SeizNet aims at providing highly accurate alerts, allowing individuals to take preventive measures without being disturbed by false alarms. SeizNet uses a combination of data collected through either invasive (intracranial electroencephalogram (iEEG)) or non-invasive (electroencephalogram (EEG) and electrocardiogram (ECG)) sensors, and processed by advanced DL algorithms that are optimized for real-time inference at the edge, ensuring privacy and minimizing data transmission. SeizNet achieves > 97% accuracy in seizure prediction while keeping the size and energy restrictions of an implantable device.
Related papers
- MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
In this paper, we consider a specific type of cyberattack known as the injection attack.
These injection attacks have effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning.
We propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction.
arXiv Detail & Related papers (2024-11-15T15:05:01Z) - A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures [10.250114060511134]
This paper introduces an innovative framework designed for progressive (granular in time to onset) prediction of seizures.
Our framework employs advanced Deep Learning (DL) techniques and uses personalized data from a network of non-invasive electroencephalogram (EEG) and electrocardiogram (ECG) sensors.
Our model achieves 95% sensitivity, 98% specificity, and 97% accuracy, averaged among 29 patients.
arXiv Detail & Related papers (2024-10-26T04:06:09Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - SepAl: Sepsis Alerts On Low Power Wearables With Digital Biomarkers and On-Device Tiny Machine Learning [1.0787328610467801]
Sepsis is a lethal syndrome of organ dysfunction that is triggered by an infection and claims 11 million lives per year globally.
Prognostic algorithms based on deep learning have shown promise in detecting the onset of sepsis hours before the actual event but use a large number of bio-markers, including vital signs and laboratory tests.
This paper introduces SepAl, an energy-efficient and lightweight neural network, using only data from low-power wearable sensors.
arXiv Detail & Related papers (2024-07-31T09:56:19Z) - SeizNet: An AI-enabled Implantable Sensor Network System for Seizure
Prediction [10.362437111632069]
We introduce SeizNet, a closed-loop system for predicting epileptic seizures through the use of Deep Learning (DL) method and implantable sensor networks.
Our results indicate that SeizNet outperforms traditional single-modality and non-personalized prediction systems in all metrics, achieving up to 99% accuracy in predicting seizure.
arXiv Detail & Related papers (2024-01-12T15:51:40Z) - EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded
Systems [9.525786920713763]
This paper introduces EpiDeNet, a new lightweight seizure detection network.
Sensitivity-Specificity Weighted Cross-Entropy (SSWCE) is a new loss function that incorporates sensitivity and specificity.
A three-window majority voting-based smoothing scheme combined with the SSWCE loss achieves 3x reduction of false positives to 1.18 FP/h.
arXiv Detail & Related papers (2023-08-28T11:29:51Z) - Knowledge-Distilled Graph Neural Networks for Personalized Epileptic
Seizure Detection [43.905374104261014]
We propose a novel knowledge distillation approach to transfer the knowledge from a sophisticated seizure detector (called the teacher) trained on data from the full set of electrodes to learn new detectors (called the student)
They are both providing lightweight implementations and significantly reducing the number of electrodes needed for recording the EEG.
Our experiments show that both knowledge-distillation and personalization play significant roles in improving performance of seizure detection, particularly for patients with scarce EEG data.
arXiv Detail & Related papers (2023-04-03T15:37:40Z) - Automatic Seizure Prediction using CNN and LSTM [0.0]
This paper proposes an end-to-end deep learning algorithm to fully automate seizure prediction's laborious task.
The network achieved an average sensitivity of 97.746text% and a false positive rate (FPR) of 0.2373 per hour.
arXiv Detail & Related papers (2022-10-28T15:15:04Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.