A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures
- URL: http://arxiv.org/abs/2410.20066v2
- Date: Fri, 01 Nov 2024 18:20:51 GMT
- Title: A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures
- Authors: Ali Saeizadeh, Douglas Schonholtz, Joseph S. Neimat, Pedram Johari, Tommaso Melodia,
- Abstract summary: This paper introduces an innovative framework designed for progressive (granular in time to onset) prediction of seizures.
Our framework employs advanced Deep Learning (DL) techniques and uses personalized data from a network of non-invasive electroencephalogram (EEG) and electrocardiogram (ECG) sensors.
Our model achieves 95% sensitivity, 98% specificity, and 97% accuracy, averaged among 29 patients.
- Score: 10.250114060511134
- License:
- Abstract: This paper introduces an innovative framework designed for progressive (granular in time to onset) prediction of seizures through the utilization of a Deep Learning (DL) methodology based on non-invasive multi-modal sensor networks. Epilepsy, a debilitating neurological condition, affects an estimated 65 million individuals globally, with a substantial proportion facing drug-resistant epilepsy despite pharmacological interventions. To address this challenge, we advocate for predictive systems that provide timely alerts to individuals at risk, enabling them to take precautionary actions. Our framework employs advanced DL techniques and uses personalized data from a network of non-invasive electroencephalogram (EEG) and electrocardiogram (ECG) sensors, thereby enhancing prediction accuracy. The algorithms are optimized for real-time processing on edge devices, mitigating privacy concerns and minimizing data transmission overhead inherent in cloud-based solutions, ultimately preserving battery energy. Additionally, our system predicts the countdown time to seizures (with 15-minute intervals up to an hour prior to the onset), offering critical lead time for preventive actions. Our multi-modal model achieves 95% sensitivity, 98% specificity, and 97% accuracy, averaged among 29 patients.
Related papers
- Demo: Multi-Modal Seizure Prediction System [9.940843218393198]
SeizNet is an innovative system for predicting epileptic seizures benefiting from a multi-modal sensor network.
Epilepsy affects approximately 65 million people worldwide, many of whom experience drug-resistant seizures.
SeizNet achieves > 97% accuracy in seizure prediction while keeping the size and energy restrictions of an implantable device.
arXiv Detail & Related papers (2024-11-01T18:21:37Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
We develop a competitive deep learning model for seizure prediction using scalp electroencephalogram (EEG) signals.
We trained and evaluated our model on 19 pediatric patients of the open-access CHB-MIT dataset in a subject-specific manner.
Using the OPP of each patient, preictal and interictal segments were correctly identified with an average sensitivity of 99.31%, specificity of 95.34%, AUC of 99.35%, and F1- score of 97.46%.
arXiv Detail & Related papers (2024-07-20T13:49:14Z) - SeizNet: An AI-enabled Implantable Sensor Network System for Seizure
Prediction [10.362437111632069]
We introduce SeizNet, a closed-loop system for predicting epileptic seizures through the use of Deep Learning (DL) method and implantable sensor networks.
Our results indicate that SeizNet outperforms traditional single-modality and non-personalized prediction systems in all metrics, achieving up to 99% accuracy in predicting seizure.
arXiv Detail & Related papers (2024-01-12T15:51:40Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Random Forest classifier for EEG-based seizure prediction [0.12183405753834559]
This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods.
We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes.
Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h.
arXiv Detail & Related papers (2021-06-02T15:46:35Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.