Financial Fraud Detection using Jump-Attentive Graph Neural Networks
- URL: http://arxiv.org/abs/2411.05857v2
- Date: Fri, 22 Nov 2024 18:34:58 GMT
- Title: Financial Fraud Detection using Jump-Attentive Graph Neural Networks
- Authors: Prashank Kadam,
- Abstract summary: A significant portion of the financial services sector employs various machine learning algorithms, such as XGBoost, Random Forest, and neural networks, to model transaction data.
We propose a novel algorithm that employs an efficient neighborhood sampling method, effective for camouflage detection and preserving crucial feature information from non-similar nodes.
- Score: 0.0
- License:
- Abstract: As the availability of financial services online continues to grow, the incidence of fraud has surged correspondingly. Fraudsters continually seek new and innovative ways to circumvent the detection algorithms in place. Traditionally, fraud detection relied on rule-based methods, where rules were manually created based on transaction data features. However, these techniques soon became ineffective due to their reliance on manual rule creation and their inability to detect complex data patterns. Today, a significant portion of the financial services sector employs various machine learning algorithms, such as XGBoost, Random Forest, and neural networks, to model transaction data. While these techniques have proven more efficient than rule-based methods, they still fail to capture interactions between different transactions and their interrelationships. Recently, graph-based techniques have been adopted for financial fraud detection, leveraging graph topology to aggregate neighborhood information of transaction data using Graph Neural Networks (GNNs). Despite showing improvements over previous methods, these techniques still struggle to keep pace with the evolving camouflaging tactics of fraudsters and suffer from information loss due to over-smoothing. In this paper, we propose a novel algorithm that employs an efficient neighborhood sampling method, effective for camouflage detection and preserving crucial feature information from non-similar nodes. Additionally, we introduce a novel GNN architecture that utilizes attention mechanisms and preserves holistic neighborhood information to prevent information loss. We test our algorithm on financial data to show that our method outperforms other state-of-the-art graph algorithms.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data [0.0]
This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection.
GANs have shown promise in modeling complex data distributions, making them effective tools for anomaly detection.
The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.
arXiv Detail & Related papers (2024-02-15T09:48:20Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
We propose a novel graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems.
Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework.
We introduce a transformer module to learn local and global information.
arXiv Detail & Related papers (2023-07-11T08:56:53Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.