Modeling Nonlinear Oscillator Networks Using Physics-Informed Hybrid Reservoir Computing
- URL: http://arxiv.org/abs/2411.05867v1
- Date: Thu, 07 Nov 2024 15:09:23 GMT
- Title: Modeling Nonlinear Oscillator Networks Using Physics-Informed Hybrid Reservoir Computing
- Authors: Andrew Shannon, Conor Houghton, David Barton, Martin Homer,
- Abstract summary: We investigate hybrid reservoir computing, combining reservoir computing with "expert" analytical models.
We show that hybrid reservoir computers generally outperform standard reservoir computers.
There is good performance for dynamical regimes not accessible to the expert model, demonstrating the contribution of the reservoir.
- Score: 0.0
- License:
- Abstract: Surrogate modeling of non-linear oscillator networks remains challenging due to discrepancies between simplified analytical models and real-world complexity. To bridge this gap, we investigate hybrid reservoir computing, combining reservoir computing with "expert" analytical models. Simulating the absence of an exact model, we first test the surrogate models with parameter errors in their expert model. Second, we assess their performance when their expert model lacks key non-linear coupling terms present in an extended ground-truth model. We focus on short-term forecasting across diverse dynamical regimes, evaluating the use of these surrogates for control applications. We show that hybrid reservoir computers generally outperform standard reservoir computers and exhibit greater robustness to parameter tuning. Notably, unlike standard reservoir computers, the performance of the hybrid does not degrade when crossing an observed spectral radius threshold. Furthermore, there is good performance for dynamical regimes not accessible to the expert model, demonstrating the contribution of the reservoir.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Predictive Modeling in the Reservoir Kernel Motif Space [0.9217021281095907]
This work proposes a time series prediction method based on the kernel view of linear reservoirs.
We provide a geometric interpretation of our approach shedding light on how our approach is related to the core reservoir models.
Empirical experiments then compare predictive performances of our suggested model with those of recent state-of-art transformer based models.
arXiv Detail & Related papers (2024-05-11T16:12:25Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - A Bi-fidelity DeepONet Approach for Modeling Uncertain and Degrading
Hysteretic Systems [0.0]
We use datasets from pristine models without considering the degrading effects of hysteretic systems as low-fidelity representations.
We show that the proposed use of the DeepONets to model the discrepancies between the low-fidelity model and the true system's response leads to significant improvements in the prediction error.
arXiv Detail & Related papers (2023-04-25T06:49:56Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Bridging the Model-Reality Gap with Lipschitz Network Adaptation [22.499090318313662]
As robots venture into the real world, they are subject to unmodeled dynamics and disturbances.
Traditional model-based control approaches have been proven successful in relatively static and known operating environments.
We propose a method that bridges the model-reality gap and enables the application of model-based approaches even if dynamic uncertainties are present.
arXiv Detail & Related papers (2021-12-07T15:12:49Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
arXiv Detail & Related papers (2020-02-28T21:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.