Efficient Self-Supervised Barlow Twins from Limited Tissue Slide Cohorts for Colonic Pathology Diagnostics
- URL: http://arxiv.org/abs/2411.05959v1
- Date: Fri, 08 Nov 2024 20:43:53 GMT
- Title: Efficient Self-Supervised Barlow Twins from Limited Tissue Slide Cohorts for Colonic Pathology Diagnostics
- Authors: Cassandre Notton, Vasudev Sharma, Vincent Quoc-Huy Trinh, Lina Chen, Minqi Xu, Sonal Varma, Mahdi S. Hosseini,
- Abstract summary: Colorectal cancer (CRC) is one of the few cancers that has an established dysplasia-carcinoma sequence that benefits from screening.
DL models face significant challenges in computational pathology (CPath) because of the gigapixel image size of whole-slide images and the scarcity of detailed annotated datasets.
This paper proposes an optimized Barlow Twins framework for colorectal polyps screening.
- Score: 14.177695952155213
- License:
- Abstract: Colorectal cancer (CRC) is one of the few cancers that have an established dysplasia-carcinoma sequence that benefits from screening. Everyone over 50 years of age in Canada is eligible for CRC screening. About 20\% of those people will undergo a biopsy for a pre-neoplastic polyp and, in many cases, multiple polyps. As such, these polyp biopsies make up the bulk of a pathologist's workload. Developing an efficient computational model to help screen these polyp biopsies can improve the pathologist's workflow and help guide their attention to critical areas on the slide. DL models face significant challenges in computational pathology (CPath) because of the gigapixel image size of whole-slide images and the scarcity of detailed annotated datasets. It is, therefore, crucial to leverage self-supervised learning (SSL) methods to alleviate the burden and cost of data annotation. However, current research lacks methods to apply SSL frameworks to analyze pathology data effectively. This paper aims to propose an optimized Barlow Twins framework for colorectal polyps screening. We adapt its hyperparameters, augmentation strategy and encoder to the specificity of the pathology data to enhance performance. Additionally, we investigate the best Field of View (FoV) for colorectal polyps screening and propose a new benchmark dataset for CRC screening, made of four types of colorectal polyps and normal tissue, by performing downstream tasking on MHIST and NCT-CRC-7K datasets. Furthermore, we show that the SSL representations are more meaningful and qualitative than the supervised ones and that Barlow Twins benefits from the Swin Transformer when applied to pathology data. Codes are avaialble from https://github.com/AtlasAnalyticsLab/PathBT.
Related papers
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis [3.716941460306804]
We introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning.
We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
arXiv Detail & Related papers (2024-04-17T13:09:44Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation [0.0]
This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
arXiv Detail & Related papers (2021-05-02T06:36:36Z) - Colonoscopy Polyp Detection and Classification: Dataset Creation and
Comparative Evaluations [12.160373952983319]
Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate.
Computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy.
This work can serve as a baseline for future research in polyp detection and classification.
arXiv Detail & Related papers (2021-04-22T01:57:35Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Diagnosing Colorectal Polyps in the Wild with Capsule Networks [7.276044182592987]
Colorectal cancer, largely arising from precursor lesions called polyps, remains one of the leading causes of cancer-related death worldwide.
We design a novel capsule network architecture (D-Caps) to improve the viability of optical biopsy of colorectal polyps.
We demonstrate improved results over the previous state-of-the-art convolutional neural network (CNN) approach by as much as 43%.
arXiv Detail & Related papers (2020-01-10T04:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.