Real randomized measurements for analyzing properties of quantum states
- URL: http://arxiv.org/abs/2411.06013v1
- Date: Fri, 08 Nov 2024 23:35:56 GMT
- Title: Real randomized measurements for analyzing properties of quantum states
- Authors: Jin-Min Liang, Satoya Imai, Shuheng Liu, Shao-Ming Fei, Otfried Gühne, Qiongyi He,
- Abstract summary: We introduce two simplified randomized measurements that limit rotations in a subspace of the complex space.
We show that these measurement protocols exhibit different abilities in capturing correlations of bipartite systems.
We explore various applications of RRMs and PRRMs in different quantum information tasks such as characterizing high-dimensional entanglement, quantum imaginarity, and predicting properties of quantum states with classical shadow.
- Score: 1.6492989697868894
- License:
- Abstract: Randomized measurements are useful for analyzing quantum systems especially when quantum control is not fully perfect. However, their practical realization typically requires multiple rotations in the complex space due to the adoption of random unitaries. Here, we introduce two simplified randomized measurements that limit rotations in a subspace of the complex space. The first is \textit{real randomized measurements} (RRMs) with orthogonal evolution and real local observables. The second is \textit{partial real randomized measurements} (PRRMs) with orthogonal evolution and imaginary local observables. We show that these measurement protocols exhibit different abilities in capturing correlations of bipartite systems. We explore various applications of RRMs and PRRMs in different quantum information tasks such as characterizing high-dimensional entanglement, quantum imaginarity, and predicting properties of quantum states with classical shadow.
Related papers
- Quantum complexity and localization in random quantum circuits [0.0]
We study complexity in random quantum circuits with and without measurements.
For $N$ qubits without measurements, the saturation value scales as $2N-1$, and the saturation time scales as $2N$.
We observe that complexity acts as a novel probe of Anderson localization and many-body localization.
arXiv Detail & Related papers (2024-09-05T16:10:54Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - The randomized measurement toolbox [3.2095357952052854]
We review recently developed protocols for probing the properties of complex many-qubit systems.
In all these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis.
We discuss a range of use cases that have already been realized in quantum devices.
arXiv Detail & Related papers (2022-03-21T22:33:18Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions [0.0]
In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
arXiv Detail & Related papers (2020-01-07T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.