論文の概要: AI-Driven Stylization of 3D Environments
- arxiv url: http://arxiv.org/abs/2411.06067v1
- Date: Sat, 09 Nov 2024 04:51:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:09.144462
- Title: AI-Driven Stylization of 3D Environments
- Title(参考訳): AIによる3次元環境のスティル化
- Authors: Yuanbo Chen, Yixiao Kang, Yukun Song, Cyrus Vachha, Sining Huang,
- Abstract要約: 我々は、NeRFや3Dガウススプラッティングといった新しい3D表現を用いて、3Dプリミティブオブジェクトのシーンを高忠実度3Dシーンにスタイリングする方法について議論する。
提案手法は,既存の画像スタイリングシステムと画像から3D生成モデルを活用して,反復的に3Dオブジェクトをシーンにスタイリングし合成するパイプラインを作成する。
- 参考スコア(独自算出の注目度): 1.1097407843705314
- License:
- Abstract: In this system, we discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting. Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes. We show our results on adding generated objects into a scene and discuss limitations.
- Abstract(参考訳): 本研究では,NeRFや3Dガウススプラッティングといった新しい3次元表現を用いて,3次元原始物体のシーンを高忠実度3Dシーンにスタイリングする方法について議論する。
提案手法は,既存の画像スタイリングシステムと画像から3D生成モデルを活用して,反復的に3Dオブジェクトをシーンにスタイリングし合成するパイプラインを作成する。
生成したオブジェクトをシーンに追加する結果を示し、制限について議論する。
関連論文リスト
- StyleSplat: 3D Object Style Transfer with Gaussian Splatting [0.3374875022248866]
スタイル転送は、さまざまな芸術スタイルで3Dアセットを強化し、創造的な表現を変革する。
本稿では,3次元ガウス表現シーンにおける3次元オブジェクトのスタイリング手法であるStyleSplatを紹介する。
様々な3Dシーンやスタイルにまたがって有効性を示し、3D生成における制御とカスタマイズの強化を示す。
論文 参考訳(メタデータ) (2024-07-12T17:55:08Z) - Lay-A-Scene: Personalized 3D Object Arrangement Using Text-to-Image Priors [43.19801974707858]
現在の3D生成技術は、複数の高解像度オブジェクトでシーンを生成するのに苦労している。
ここでは,オープンセット3Dオブジェクトアレンジメントの課題を解決するLay-A-Sceneを紹介する。
本研究では,2次元シーン上にオブジェクトの一貫した投影を見出すことにより,オブジェクトの3次元ポーズや配置を2次元画像から推測する方法を示す。
論文 参考訳(メタデータ) (2024-06-02T09:48:19Z) - CAT3D: Create Anything in 3D with Multi-View Diffusion Models [87.80820708758317]
CAT3D(CAT3D)は,この実世界のキャプチャプロセスを多視点拡散モデルでシミュレートし,任意のものを3Dで作成する手法である。
CAT3Dは1分で3Dシーン全体を作成できる。
論文 参考訳(メタデータ) (2024-05-16T17:59:05Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - GO-NeRF: Generating Virtual Objects in Neural Radiance Fields [75.13534508391852]
GO-NeRFは、既存のNeRF内の高品質で調和した3Dオブジェクト生成にシーンコンテキストを利用することができる。
本手法では,生成した3次元オブジェクトをシームレスにシーンに合成する構成的レンダリング形式を用いる。
論文 参考訳(メタデータ) (2024-01-11T08:58:13Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
既存のアプローチでは、大規模なテキスト・ツー・イメージモデルを使用して3D表現を最適化するか、オブジェクト中心のデータセット上で3Dジェネレータをトレーニングする。
テキストから高忠実度3Dシーンを合成する新しい手法であるSceneWiz3Dを紹介する。
論文 参考訳(メタデータ) (2023-12-13T18:59:30Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
本稿では,複雑な3次元シーンを2次元セマンティックなシーンレイアウトで合成する条件生成モデルであるCC3Dを紹介する。
合成3D-FRONTと実世界のKITTI-360データセットに対する評価は、我々のモデルが視覚的および幾何学的品質を改善したシーンを生成することを示す。
論文 参考訳(メタデータ) (2023-03-21T17:59:02Z) - 3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation [107.46972849241168]
3D-TOGOモデルは、良好なテクスチャを持つニューラルレージアンスフィールドの形で3Dオブジェクトを生成する。
最大3Dオブジェクトデータセット(ABO)の実験を行い、3D-TOGOが高品質な3Dオブジェクトをより良く生成できることを検証する。
論文 参考訳(メタデータ) (2022-12-02T11:31:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。