Rotation quenches in trapped bosonic systems
- URL: http://arxiv.org/abs/2411.06163v1
- Date: Sat, 09 Nov 2024 12:20:50 GMT
- Title: Rotation quenches in trapped bosonic systems
- Authors: Rhombik Roy, Sunayana Dutta, Ofir E. Alon,
- Abstract summary: Our study offers insights into the dynamics of trapped Bose-Einstein condensates under different rotation quench scenarios.
The absence of angular momentum conservation in asymmetric traps results in more complex dynamics.
We observe and analyze these intricate dynamics both for the mean-field condensed and the many-body fragmented systems.
- Score: 0.0
- License:
- Abstract: The ground state properties of strongly rotating bosons confined in an asymmetric anharmonic potential exhibit a split density distribution. However, the out-of-equilibrium dynamics of this split structure remain largely unexplored. Given that rotation is responsible for the breakup of the bosonic cloud, we investigate the out-of-equilibrium dynamics by abruptly changing the rotation frequency. Our study offers insights into the dynamics of trapped Bose-Einstein condensates in both symmetric and asymmetric anharmonic potentials under different rotation quench scenarios. In the rotationally symmetric trap, angular momentum is a good quantum number. This makes it challenging to exchange angular momentum within the system; hence, a rotation quench does practically not impact the density distribution. In contrast, the absence of angular momentum conservation in asymmetric traps results in more complex dynamics. This allows rotation quenches to either inject into or extract angular momentum from the system. We observe and analyze these intricate dynamics both for the mean-field condensed and the many-body fragmented systems. The dynamical evolution of the condensed system and the fragmented system exhibits similarities in several observables during small rotation quenches. However, these similarities diverge notably for larger quenches. Additionally, we investigate the formation and the impact of the vortices on the angular momentum dynamics of the evolving split density. All in all, our findings offer valuable insights into the dynamics of trapped interacting bosons under different rotation quenches.
Related papers
- Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving [1.641189223782504]
Time crystal, a nonequilibrium phenomenon extending spontaneous symmetry breaking into the temporal dimension, holds fundamental significance in quantum many-body physics.
We numerically identify the emergence of novel nonstationary oscillatory states by analyzing the spin dynamics.
This study provides many insights into the intricate interplay between the dissipation-induced spin downwards and anisotropic-interaction-induced spin precession or spin fluctuation.
arXiv Detail & Related papers (2024-03-13T12:40:32Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Spin Rotations in a Bose-Einstein Condensate Driven by Counterflow and
Spin-independent Interactions [0.0]
We observe spin rotations caused by atomic collisions in a non-equilibrium Bose-condensed gas of $87$Rb.
A local magnetodynamic model captures the salient features of the observed spin textures.
arXiv Detail & Related papers (2023-08-30T14:46:50Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Quantum vacuum, rotation, and nonlinear fields [0.0]
We extend previous results on the quantum vacuum or Casimir energy, for a non-interacting rotating system and for an interacting non-rotating system.
We consider the simultaneous effect of rotation and interactions, including an explicit breaking of rotational symmetry.
Our work shows that the simultaneous inclusion of rotation and interactions produces nontrivial changes in the quantum vacuum energy.
arXiv Detail & Related papers (2022-12-06T06:13:22Z) - Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases [0.0]
We show that spin waves affect the supersolid's density profile in the form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes.
Our results show that this system is a paradigmatic supersolid, featuring superfluidity in conjunction with a fully dynamic crystalline structure.
arXiv Detail & Related papers (2022-10-18T18:00:09Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Disorder-free localization in quantum walks [0.0]
We study a discrete time quantum walker which exhibits disorder free localization.
We find that even in the delocalized regime, entanglement growth and relaxation occur slowly unlike marjority of the other models displaying a localization transition.
arXiv Detail & Related papers (2020-09-09T21:02:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.