Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases
- URL: http://arxiv.org/abs/2210.10064v2
- Date: Tue, 11 Jul 2023 18:00:05 GMT
- Title: Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases
- Authors: Kevin T. Geier, Giovanni I. Martone, Philipp Hauke, Wolfgang Ketterle
and Sandro Stringari
- Abstract summary: We show that spin waves affect the supersolid's density profile in the form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes.
Our results show that this system is a paradigmatic supersolid, featuring superfluidity in conjunction with a fully dynamic crystalline structure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite ground-breaking observations of supersolidity in spin-orbit-coupled
Bose-Einstein condensates, until now the dynamics of the emerging spatially
periodic density modulations has been vastly unexplored. Here, we demonstrate
the nonrigidity of the density stripes in such a supersolid condensate and
explore their dynamic behavior subject to spin perturbations. We show both
analytically in infinite systems and numerically in the presence of a harmonic
trap how spin waves affect the supersolid's density profile in the form of
crystal waves, inducing oscillations of the periodicity as well as the
orientation of the fringes. Both these features are well within reach of
present-day experiments. Our results show that this system is a paradigmatic
supersolid, featuring superfluidity in conjunction with a fully dynamic
crystalline structure.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Hilbert Space Fragmentation and Subspace Scar Time-Crystallinity in
Driven Homogeneous Central-Spin Models [5.9969431417128405]
We study the stroboscopic non-equilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions.
The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces.
arXiv Detail & Related papers (2024-02-28T02:30:40Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Chirped Bloch-Harmonic oscillations in a parametrically forced optical
lattice [3.222802562733787]
Acceleration for wavepacket propagation in periodic potentials disentangles the kspace dynamics and real-space dynamics.
We analyze the dynamics of a model system in which the k-space dynamics and the real-space dynamics are in intertwined due to a position-dependent force.
arXiv Detail & Related papers (2023-06-15T16:43:42Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Observing dynamical currents in a non-Hermitian momentum lattice [1.4292032980797766]
Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity.
We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice.
Results can be extended to a regime exhibiting a cascade of currents and simultaneous coherences between multiple lattice sites.
arXiv Detail & Related papers (2021-08-26T16:24:58Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Vibrational dressing in Kinetically Constrained Rydberg Spin Systems [0.0]
We discuss a facilitated spin system inspired by recent progress in the realization of Rydberg quantum simulators.
This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations.
We show that this leads to the formation of polaronic quasiparticles which are formed by many-body spin states dressed by phonons.
arXiv Detail & Related papers (2020-02-28T19:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.