論文の概要: SEEKR: Selective Attention-Guided Knowledge Retention for Continual Learning of Large Language Models
- arxiv url: http://arxiv.org/abs/2411.06171v1
- Date: Sat, 09 Nov 2024 13:02:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:00.291328
- Title: SEEKR: Selective Attention-Guided Knowledge Retention for Continual Learning of Large Language Models
- Title(参考訳): SEEKR:大規模言語モデルの連続学習のための選択的注意誘導型知識保持
- Authors: Jinghan He, Haiyun Guo, Kuan Zhu, Zihan Zhao, Ming Tang, Jinqiao Wang,
- Abstract要約: 本研究では,大規模言語モデル (LLM) のデータ効率性に基づく連続学習のためのSelective attEntion-guided Knowledge Retention法(SEEKR)を提案する。
SEEKRは、よりきめ細かい知識保持のために選択された注目ヘッドに注意蒸留を行う。
LLMのための2つの連続学習ベンチマークの実験結果は、SEEKRが既存の手法よりも性能と効率の両面で優れていることを示す。
- 参考スコア(独自算出の注目度): 27.522743690956315
- License:
- Abstract: Continual learning (CL) is crucial for language models to dynamically adapt to the evolving real-world demands. To mitigate the catastrophic forgetting problem in CL, data replay has been proven a simple and effective strategy, and the subsequent data-replay-based distillation can further enhance the performance. However, existing methods fail to fully exploit the knowledge embedded in models from previous tasks, resulting in the need for a relatively large number of replay samples to achieve good results. In this work, we first explore and emphasize the importance of attention weights in knowledge retention, and then propose a SElective attEntion-guided Knowledge Retention method (SEEKR) for data-efficient replay-based continual learning of large language models (LLMs). Specifically, SEEKR performs attention distillation on the selected attention heads for finer-grained knowledge retention, where the proposed forgettability-based and task-sensitivity-based measures are used to identify the most valuable attention heads. Experimental results on two continual learning benchmarks for LLMs demonstrate the superiority of SEEKR over the existing methods on both performance and efficiency. Explicitly, SEEKR achieves comparable or even better performance with only 1/10 of the replayed data used by other methods, and reduces the proportion of replayed data to 1%.
- Abstract(参考訳): 継続的な学習(CL)は、言語モデルが進化する現実世界の要求に動的に適応するために不可欠である。
CLにおける破滅的な忘れの問題を緩和するため、データ再生は単純で効果的な戦略であることが証明され、その後のデータ再生に基づく蒸留により、さらなる性能向上が期待できる。
しかし、既存の手法では、以前のタスクからモデルに埋め込まれた知識を十分に活用することができず、結果として、良い結果を得るためには比較的多くのリプレイサンプルが必要である。
本研究では、まず、知識保持における注意重みの重要性を探求し、次に、大規模言語モデル(LLM)のデータ効率の高いリプレイベース連続学習のためのセレクティブttEntion-guided Knowledge Retention法(SEEKR)を提案する。
具体的には、SEEKRは、選択された注目ヘッドに対して、よりきめ細かな知識保持のための注意蒸留を行う。
LLMのための2つの連続学習ベンチマークの実験結果は、SEEKRが既存の手法よりも性能と効率の両面で優れていることを示す。
SEEKRは、他のメソッドが使用する再生データの1/10で同等またはそれ以上の性能を実現し、再生データの比率を1%に下げる。
関連論文リスト
- CLIP-CID: Efficient CLIP Distillation via Cluster-Instance Discrimination [28.061239778773423]
CLIP(Contrastive Language- Image Pre-Training)は、幅広いタスクにおいて優れたパフォーマンスを実現している。
CLIPは事前学習データのかなりのコーパスに大きく依存しており、計算資源を消費している。
CLIP-CID(CLIP-CID)は,大規模視覚言語基礎モデルからより小さなモデルへ知識を効果的に伝達する蒸留機構である。
論文 参考訳(メタデータ) (2024-08-18T11:23:21Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented Language Model (RALMs) は、外部データストアからロングテールおよび最新の知識にアクセスすることで、パフォーマンスを向上させる。
既存のアプローチでは、LM事前トレーニングに高価な検索固有の修正が必要になるか、あるいは、最適以下のパフォーマンスをもたらすデータストアのポストホック統合を使用する必要がある。
本稿では,第3の選択肢を提供する軽量な微調整手法であるRetrieval-Augmented Dual Instruction Tuning (RA-DIT)を紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:16:26Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
我々は、強化学習のためのモデルに依存しないコントラスト駆動学習フレームワーク(CCLF)を開発した。
CCLFは、サンプルの重要性を完全に活用し、自己管理的な学習効率を向上させる。
このアプローチをDeepMind Control Suite、Atari、MiniGridベンチマークで評価する。
論文 参考訳(メタデータ) (2022-05-02T14:42:05Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
エンドツーエンド自動音声認識(ASR)のための漸進的学習法を提案する。
本稿では, ASRモデルに対する新しい説明可能性に基づく知識蒸留を設計し, 応答に基づく知識蒸留と組み合わせて, 元のモデルの予測と予測の「理性」を維持する。
多段階連続訓練タスクの結果,提案手法は忘れを緩和する上で,既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-05-11T08:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。