Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation
- URL: http://arxiv.org/abs/2411.06221v1
- Date: Sat, 09 Nov 2024 15:49:42 GMT
- Title: Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation
- Authors: Lei Yu, Shiqi Chen, Hang Yuan, Peng Wang, Zhirong Huang, Jingyuan Zhang, Chenjie Shen, Fengjun Zhang, Li Yang, Jiajia Ma,
- Abstract summary: Existing smart contract vulnerability detection methods face three main issues.
Insufficient quality of datasets, lacking detailed explanations and precise vulnerability locations.
We propose Smart-LLaMA, an advanced detection method based on the LLaMA language model.
- Score: 21.39496709865097
- License:
- Abstract: With the rapid development of blockchain technology, smart contract security has become a critical challenge. Existing smart contract vulnerability detection methods face three main issues: (1) Insufficient quality of datasets, lacking detailed explanations and precise vulnerability locations. (2) Limited adaptability of large language models (LLMs) to the smart contract domain, as most LLMs are pre-trained on general text data but minimal smart contract-specific data. (3) Lack of high-quality explanations for detected vulnerabilities, as existing methods focus solely on detection without clear explanations. These limitations hinder detection performance and make it harder for developers to understand and fix vulnerabilities quickly, potentially leading to severe financial losses. To address these problems, we propose Smart-LLaMA, an advanced detection method based on the LLaMA language model. First, we construct a comprehensive dataset covering four vulnerability types with labels, detailed explanations, and precise vulnerability locations. Second, we introduce Smart Contract-Specific Continual Pre-Training, using raw smart contract data to enable the LLM to learn smart contract syntax and semantics, enhancing their domain adaptability. Furthermore, we propose Explanation-Guided Fine-Tuning, which fine-tunes the LLM using paired vulnerable code and explanations, enabling both vulnerability detection and reasoned explanations. We evaluate explanation quality through LLM and human evaluation, focusing on Correctness, Completeness, and Conciseness. Experimental results show that Smart-LLaMA outperforms state-of-the-art baselines, with average improvements of 6.49% in F1 score and 3.78% in accuracy, while providing reliable explanations.
Related papers
- Leveraging Fine-Tuned Language Models for Efficient and Accurate Smart Contract Auditing [5.65127016235615]
This paper investigates the feasibility of using smaller, fine-tuned models to achieve comparable or even superior results in smart contract auditing.
We introduce the FTSmartAudit framework, which is designed to develop cost-effective, specialized models for smart contract auditing.
Our contributions include: (1) a single-task learning framework that streamlines data preparation, training, evaluation, and continuous learning; (2) a robust dataset generation method utilizing domain-special knowledge distillation to produce high-quality datasets from advanced models like GPT-4o; and (3) an adaptive learning strategy to maintain model accuracy and robustness.
arXiv Detail & Related papers (2024-10-17T09:09:09Z) - LLM-SmartAudit: Advanced Smart Contract Vulnerability Detection [3.1409266162146467]
This paper introduces LLM-SmartAudit, a novel framework to detect and analyze vulnerabilities in smart contracts.
Using a multi-agent conversational approach, LLM-SmartAudit employs a collaborative system with specialized agents to enhance the audit process.
Our framework can detect complex logic vulnerabilities that traditional tools have previously overlooked.
arXiv Detail & Related papers (2024-10-12T06:24:21Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Soley: Identification and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts Using Large Language Models [1.081463830315253]
We empirically investigate logic vulnerabilities in real-world smart contracts extracted from code changes on GitHub.
We introduce Soley, an automated method for detecting logic vulnerabilities in smart contracts.
We examine mitigation strategies employed by smart contract developers to address these vulnerabilities in real-world scenarios.
arXiv Detail & Related papers (2024-06-24T00:15:18Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - PrAIoritize: Automated Early Prediction and Prioritization of Vulnerabilities in Smart Contracts [1.081463830315253]
Smart contracts are prone to numerous security threats due to undisclosed vulnerabilities and code weaknesses.
Efficient prioritization is crucial for smart contract security.
Our research aims to provide an automated approach, PrAIoritize, for prioritizing and predicting critical code weaknesses.
arXiv Detail & Related papers (2023-08-21T23:30:39Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.