Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons
- URL: http://arxiv.org/abs/2411.06265v1
- Date: Sat, 09 Nov 2024 19:33:34 GMT
- Title: Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons
- Authors: John W. Moffat,
- Abstract summary: This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO.
We demonstrate that while a simple graviton scattering model fails to explain the observed arm displacements, both the classical gravitational wave approach and a quantum gravitational energy method successfully predict the correct results.
- Score: 0.0
- License:
- Abstract: This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO. We demonstrate that while a simple graviton scattering model fails to explain the observed arm displacements, both the classical gravitational wave approach and a quantum gravitational energy method successfully predict the correct results. We provide a detailed analysis of why the quantum graviton energy approach succeeds, highlighting the importance of collective behavior and the quantum-classical correspondence in gravitational wave physics. Our findings contribute to the ongoing discussion about the quantum nature of gravity and its observable effects in macroscopic physics.
Related papers
- Genuine tripartite entanglement in graviton-matter interactions [0.0]
We show the existence of genuine tripartite non-Gaussian entanglement in a quantum gravitational system.
We introduce a new entanglement witness, well-suited for the graviton-matter interaction Hamiltonian analysed here.
We show that the witness is non-zero for the three-mode states generated by the Hamiltonian when the system starts in the ground state.
arXiv Detail & Related papers (2024-11-05T17:40:11Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Unveiling gravity's quantum fingerprint through gravitational waves [0.49157446832511503]
We introduce an innovative method to explore gravity's quantum aspects using a novel theoretical framework.
Our model delves into gravity-induced entanglement (GIE) while sidestepping classical communication limitations imposed by the LOCC principle.
arXiv Detail & Related papers (2024-03-17T16:06:44Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Quantum signatures in nonlinear gravitational waves [0.0]
We investigate quantum signatures in gravitational waves using tools from quantum optics.
We show that Squeezed-coherent gravitational waves can enhance or suppress the signal measured by an interferometer.
We also show that Gaussian gravitational wave quantum states can be reconstructed from measurements over an ensemble of optical fields interacting with a single copy of the gravitational wave.
arXiv Detail & Related papers (2021-11-02T17:55:53Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.