論文の概要: Activation Map Compression through Tensor Decomposition for Deep Learning
- arxiv url: http://arxiv.org/abs/2411.06346v1
- Date: Sun, 10 Nov 2024 03:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:11:18.282784
- Title: Activation Map Compression through Tensor Decomposition for Deep Learning
- Title(参考訳): 深層学習のためのテンソル分解による活性化マップ圧縮
- Authors: Le-Trung Nguyen, Aël Quélennec, Enzo Tartaglione, Samuel Tardieu, Van-Tam Nguyen,
- Abstract要約: バックプロパゲーションの主なボトルネック、すなわちアクティベーションマップストレージのメモリフットプリントに取り組む。
低次分解の応用は、学習に不可欠な特徴を保ちながら、かなりのメモリ節約をもたらす。
- 参考スコア(独自算出の注目度): 5.008189006630566
- License:
- Abstract: Internet of Things and Deep Learning are synergetically and exponentially growing industrial fields with a massive call for their unification into a common framework called Edge AI. While on-device inference is a well-explored topic in recent research, backpropagation remains an open challenge due to its prohibitive computational and memory costs compared to the extreme resource constraints of embedded devices. Drawing on tensor decomposition research, we tackle the main bottleneck of backpropagation, namely the memory footprint of activation map storage. We investigate and compare the effects of activation compression using Singular Value Decomposition and its tensor variant, High-Order Singular Value Decomposition. The application of low-order decomposition results in considerable memory savings while preserving the features essential for learning, and also offers theoretical guarantees to convergence. Experimental results obtained on main-stream architectures and tasks demonstrate Pareto-superiority over other state-of-the-art solutions, in terms of the trade-off between generalization and memory footprint.
- Abstract(参考訳): モノのインターネット(Internet of Things)とディープラーニング(Deep Learning)は、Edge AIと呼ばれる共通のフレームワークへの統合を求める大声で、相乗的かつ指数関数的に成長する産業分野である。
デバイス上の推論は最近の研究ではよく研究されているトピックであるが、組み込みデバイスの極端なリソース制約に比べて計算とメモリコストが禁じられているため、バックプロパゲーションは依然としてオープンな課題である。
テンソル分解の研究に基づいて、バックプロパゲーションの主なボトルネック、すなわちアクティベーションマップストレージのメモリフットプリントに取り組む。
Singular Value Decompositionとそのテンソル変種であるHigh-Order Singular Value Decompositionを用いて,アクティベーション圧縮の効果について検討・比較する。
低次分解の応用は、学習に不可欠な特徴を保ちながらかなりのメモリ節約をもたらし、また収束を理論的に保証する。
メインストリームアーキテクチャとタスクで得られた実験結果は、一般化とメモリフットプリントのトレードオフの観点から、他の最先端ソリューションよりもパレート優位性を示す。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
論文 参考訳(メタデータ) (2024-06-10T11:00:26Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
本稿では,メモリリプレイ技術を用いて,メモリ爆発問題に対処する枠組みを提案する。
Topology-aware Embedding Memory (TEM) を用いたPDGNNは最先端技術よりも優れている。
論文 参考訳(メタデータ) (2024-01-24T03:03:17Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipperはモデルベースの強化学習フレームワークである。
これは、与えられたタスクをより小さく、より管理しやすいサブタスクに自動的に一般化する。
環境の関連部分には、スパースな意思決定と集中した抽象化を可能にする。
論文 参考訳(メタデータ) (2023-09-30T02:25:18Z) - HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer
Compression [69.36555801766762]
本稿では,分解可能な指数空間を効率的に探索できるハードウェア対応テンソル分解フレームワークHEATを提案する。
ハードウェア対応のBERT変異体は, エネルギー遅延を5.7倍に低減し, 精度が1.1%以下であることを示す。
論文 参考訳(メタデータ) (2022-11-30T05:31:45Z) - Kronecker Decomposition for Knowledge Graph Embeddings [5.49810117202384]
知識グラフ埋め込みモデルにおけるパラメータ数を削減するために,Kronecker分解に基づく手法を提案する。
この分解により、3つの埋め込みベクトル間の要素的相互作用が各埋め込みベクトル内の相互作用によって拡張されることが保証される。
実験により,Kronecker分解を埋め込み行列に適用すると,全てのベンチマークデータセットのパラメータ効率が向上することが示唆された。
論文 参考訳(メタデータ) (2022-05-13T11:11:03Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - More Is Better: An Analysis of Instance Quantity/Quality Trade-off in
Rehearsal-based Continual Learning [3.9596068699962315]
連続学習はコネクショナリストシステムの安定性・塑性ジレンマに対処する手段となっている。
本稿では、メモリに格納可能なインスタンス数を増やすために、様々なデータ削減アプローチを採用したメモリ量/品質トレードオフの分析を行う。
その結果, 最適トレードオフは, 非常に圧縮された複数のインスタンスによるリハーサルアプローチが, 最先端のアプローチよりも容易に向上することがわかった。
論文 参考訳(メタデータ) (2021-05-28T21:05:51Z) - A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition [9.414818018857316]
本稿では,人間行動認識(HAR)に用いるリカレントニューラルネットワーク(RNN)を効果的に圧縮する手法を提案する。
変分情報ボトルネック(VIB)理論に基づくプルーニング手法を用いて,RNNの逐次セルを流れる情報の流れを小さなサブセットに制限する。
我々は、圧縮を大幅に改善する特定のグループ・ラッソ正規化手法とプルーニング手法を組み合わせる。
提案手法は,UCF11上での動作認識の精度に比較して,最も近い競合に比べて70倍以上の圧縮を実現する。
論文 参考訳(メタデータ) (2020-10-03T12:41:51Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z) - Tensor decomposition to Compress Convolutional Layers in Deep Learning [5.199454801210509]
本稿では,CP分解法を用いて,ディープラーニングにおける畳み込み層(CPAC-Conv層)を近似的に圧縮することを提案する。
提案するCPAC-Conv層に対して, 提案したCPAC-Conv層に対して, 提案したCPAC-Conv層を圧縮するためにCP分解を適用し, 提案したCPAC-Conv層と比較して, 提案したCPAC-Conv層は, 予測性能を損なうことなくパラメータ数を減少させることができ, (3) 分解されたカーネルの値は, 対応する特徴写像の意義を示す。
論文 参考訳(メタデータ) (2020-05-28T02:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。