A Hybrid Approach for COVID-19 Detection: Combining Wasserstein GAN with Transfer Learning
- URL: http://arxiv.org/abs/2411.06397v2
- Date: Mon, 18 Nov 2024 10:53:24 GMT
- Title: A Hybrid Approach for COVID-19 Detection: Combining Wasserstein GAN with Transfer Learning
- Authors: Sumera Rounaq, Shahid Munir Shah, Mahmoud Aljawarneh,
- Abstract summary: We propose GAN-based approach to synthesize images which later fed into the deep learning models to classify images of COVID-19, Normal, and Viral Pneumonia.
This expanded dataset is then used to train four proposed deep learning models: VGG-16, ResNet-50, GoogLeNet and MNAST.
VGG-16 achieved highest accuracy of 99.17% among all four proposed schemes.
- Score: 0.0
- License:
- Abstract: COVID-19 is extremely contagious and its rapid growth has drawn attention towards its early diagnosis. Early diagnosis of COVID-19 enables healthcare professionals and government authorities to break the chain of transition and flatten the epidemic curve. With the number of cases accelerating across the developed world, COVID-19 induced Viral Pneumonia cases is a big challenge. Overlapping of COVID-19 cases with Viral Pneumonia and other lung infections with limited dataset and long training hours is a serious problem to cater. Limited amount of data often results in over-fitting models and due to this reason, model does not predict generalized results. To fill this gap, we proposed GAN-based approach to synthesize images which later fed into the deep learning models to classify images of COVID-19, Normal, and Viral Pneumonia. Specifically, customized Wasserstein GAN is proposed to generate 19% more Chest X-ray images as compare to the real images. This expanded dataset is then used to train four proposed deep learning models: VGG-16, ResNet-50, GoogLeNet and MNAST. The result showed that expanded dataset utilized deep learning models to deliver high classification accuracies. In particular, VGG-16 achieved highest accuracy of 99.17% among all four proposed schemes. Rest of the models like ResNet-50, GoogLeNet and MNAST delivered 93.9%, 94.49% and 97.75% testing accuracies respectively. Later, the efficiency of these models is compared with the state of art models on the basis of accuracy. Further, our proposed models can be applied to address the issue of scant datasets for any problem of image analysis.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - COVID-19 Detection through Deep Feature Extraction [0.0]
The study proposes a novel approach that utilizes deep feature extraction technique, pre-trained ResNet50 acting as the backbone of the network, combined with Logistic Regression as the head model.
The proposed model achieves a cross-validation accuracy of 100% on the COVID-19 and Normal X-Ray image classes.
arXiv Detail & Related papers (2021-11-21T08:32:08Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019.
In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks.
We proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis.
arXiv Detail & Related papers (2021-06-23T11:21:30Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
We demonstrate the first attempt to diagnose COVID-19 using end-to-end deep learning from a crowd-sourced dataset of audio samples.
We introduce a novel modelling strategy using a custom deep neural network to diagnose COVID-19 from a joint breath and cough representation.
arXiv Detail & Related papers (2021-01-07T01:13:00Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNet is a Deep Conceptional Neural Network model to automatically detect COVID-19 infection from chest X-ray images.
The proposed model achieved an overall accuracy of 89.6% and the precision and recall rate for COVID-19 cases are 93% and 98.2%.
arXiv Detail & Related papers (2020-04-10T07:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.