Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis
- URL: http://arxiv.org/abs/2106.12313v1
- Date: Wed, 23 Jun 2021 11:21:30 GMT
- Title: Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis
- Authors: Zhongliang Li, Zhihao Jin, Xuechen Li, Linlin Shen
- Abstract summary: The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019.
In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks.
We proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis.
- Score: 22.54540093657541
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world
since its first report in December 2019 and thoracic computed tomography (CT)
has become one of the main tools for its diagnosis. In recent years, deep
learning-based approaches have shown impressive performance in myriad image
recognition tasks. However, they usually require a large number of annotated
data for training. Inspired by Ground Glass Opacity (GGO), a common finding in
COIVD-19 patient's CT scans, we proposed in this paper a novel self-supervised
pretraining method based on pseudo lesions generation and restoration for
COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical
model, to generate lesion-like patterns, which were then randomly pasted to the
lung regions of normal CT images to generate pseudo COVID-19 images. The pairs
of normal and pseudo COVID-19 images were then used to train an encoder-decoder
architecture based U-Net for image restoration, which does not require any
labelled data. The pretrained encoder was then fine-tuned using labelled data
for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of
CT images were employed for evaluation. Comprehensive experimental results
demonstrated that the proposed self-supervised learning approach could extract
better feature representation for COVID-19 diagnosis and the accuracy of the
proposed method outperformed the supervised model pretrained on large scale
images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset,
respectively.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Learning Diagnosis of COVID-19 from a Single Radiological Image [1.9049294570026933]
We propose a novel conditional generative model, called CoSinGAN, which can be learned from a single radiological image with a given condition.
Our CoSinGAN is able to capture the conditional distribution of visual finds of COVID-19 infection, and further synthesize diverse and high-resolution radiological images.
Both deep classification and segmentation networks trained on synthesized samples from CoSinGAN achieve notable detection accuracy of COVID-19 infection.
arXiv Detail & Related papers (2020-06-06T07:41:28Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.