Reinforcement learning for Quantum Tiq-Taq-Toe
- URL: http://arxiv.org/abs/2411.06429v1
- Date: Sun, 10 Nov 2024 11:20:36 GMT
- Title: Reinforcement learning for Quantum Tiq-Taq-Toe
- Authors: Catalin-Viorel Dinu, Thomas Moerland,
- Abstract summary: We study the combination of quantum computing and reinforcement learning in Quantum Tiq-Taq-Toe.
Quantum games are challenging to represent classically due to their inherent partial observability and the potential for exponential state complexity.
- Score: 0.0
- License:
- Abstract: Quantum Tiq-Taq-Toe is a well-known benchmark and playground for both quantum computing and machine learning. Despite its popularity, no reinforcement learning (RL) methods have been applied to Quantum Tiq-Taq-Toe. Although there has been some research on Quantum Chess this game is significantly more complex in terms of computation and analysis. Therefore, we study the combination of quantum computing and reinforcement learning in Quantum Tiq-Taq-Toe, which may serve as an accessible testbed for the integration of both fields. Quantum games are challenging to represent classically due to their inherent partial observability and the potential for exponential state complexity. In Quantum Tiq-Taq-Toe, states are observed through Measurement (a 3x3 matrix of state probabilities) and Move History (a 9x9 matrix of entanglement relations), making strategy complex as each move can collapse the quantum state.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Multiqubit state learning with entangling quantum generative adversarial
networks [0.0]
We investigate the entangling quantum GAN (EQ-GAN) for multiqubit learning.
We show that the EQ-GAN can learn a circuit more efficiently compared with a SWAP test.
We also consider random state learning with the EQ-GAN for up to six qubits, using different two-qubit gates.
arXiv Detail & Related papers (2022-04-20T18:00:01Z) - Quantum Semi-Supervised Learning with Quantum Supremacy [0.0]
Quantum machine learning promises to efficiently solve important problems.
There are two persistent challenges in classical machine learning: the lack of labeled data, and the limit of computational power.
We propose a novel framework that resolves both issues: quantum semi-supervised learning.
arXiv Detail & Related papers (2021-10-05T20:15:58Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Go Machine [15.33065067850941]
We experimentally demonstrate a quantum version of Go using correlated photon pairs entangled in polarization degree of freedom.
Some quantum resources, like coherence or entanglement, can also be encoded to represent the state of quantum stones.
Our results establish a paradigm of inventing new games with quantum-enabled difficulties.
arXiv Detail & Related papers (2020-07-23T18:00:01Z) - Quantum supremacy in driven quantum many-body systems [0.0]
We show that quantum supremacy can be obtained in generic periodically-driven quantum many-body systems.
Our proposal opens the way for a large class of quantum platforms to demonstrate and benchmark quantum supremacy.
arXiv Detail & Related papers (2020-02-27T07:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.