SamRobNODDI: Q-Space Sampling-Augmented Continuous Representation Learning for Robust and Generalized NODDI
- URL: http://arxiv.org/abs/2411.06444v1
- Date: Sun, 10 Nov 2024 12:25:00 GMT
- Title: SamRobNODDI: Q-Space Sampling-Augmented Continuous Representation Learning for Robust and Generalized NODDI
- Authors: Taohui Xiao, Jian Cheng, Wenxin Fan, Enqing Dong, Hairong Zheng, Shanshan Wang,
- Abstract summary: We propose a q-space sampling augmentation-based continuous representation learning framework (SamRobNODDI) to achieve robust and generalized NODDI.
Specifically, a continuous representation learning method based on q-space sampling augmentation is introduced to fully explore the information between different gradient directions in q-space.
We design a sampling consistency loss to constrain the outputs of different sampling schemes, ensuring that the outputs remain as consistent as possible.
- Score: 12.08756944029135
- License:
- Abstract: Neurite Orientation Dispersion and Density Imaging (NODDI) microstructure estimation from diffusion magnetic resonance imaging (dMRI) is of great significance for the discovery and treatment of various neurological diseases. Current deep learning-based methods accelerate the speed of NODDI parameter estimation and improve the accuracy. However, most methods require the number and coordinates of gradient directions during testing and training to remain strictly consistent, significantly limiting the generalization and robustness of these models in NODDI parameter estimation. In this paper, we propose a q-space sampling augmentation-based continuous representation learning framework (SamRobNODDI) to achieve robust and generalized NODDI. Specifically, a continuous representation learning method based on q-space sampling augmentation is introduced to fully explore the information between different gradient directions in q-space. Furthermore, we design a sampling consistency loss to constrain the outputs of different sampling schemes, ensuring that the outputs remain as consistent as possible, thereby further enhancing performance and robustness to varying q-space sampling schemes. SamRobNODDI is also a flexible framework that can be applied to different backbone networks. To validate the effectiveness of the proposed method, we compared it with 7 state-of-the-art methods across 18 different q-space sampling schemes, demonstrating that the proposed SamRobNODDI has better performance, robustness, generalization, and flexibility.
Related papers
- Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD)
ParsDMD is a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both temporal and purely temporal data.
It is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations, and atmospheric sea-surface temperature (SST) data.
arXiv Detail & Related papers (2024-10-22T03:00:11Z) - RobNODDI: Robust NODDI Parameter Estimation with Adaptive Sampling under Continuous Representation [14.80661323868321]
Current deep learning-based methods perform parameter estimation through diffusion magnetic resonance imaging (dMRI)
We propose a robust NODDI parameter estimation method with adaptive sampling under continuous representation (RobNODDI)
Test results indicate that RobNODDI improves the generalization performance and robustness of the deep learning model.
arXiv Detail & Related papers (2024-08-04T07:04:59Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models [66.67616086310662]
Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks.
As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed.
We propose SA-of-r, which is an improved efficient Adams method for solving diffusion SDE to generate data with high quality.
arXiv Detail & Related papers (2023-09-10T12:44:54Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems [3.776050336003086]
We propose a novel direct sampling-based deep learning approach (DSM-DL) for reconstructing inhomogeneous scatterers.
Our proposed DSM-DL is computationally efficient, robust to noise, easy to implement, and able to naturally incorporate multiple measured data.
arXiv Detail & Related papers (2023-04-29T12:29:30Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics
Identification [0.5249805590164902]
A physics-informed greedy Latent Space Dynamics Identification (gLa) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling.
An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics.
The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems.
arXiv Detail & Related papers (2022-04-26T00:15:46Z) - Alternating Learning Approach for Variational Networks and Undersampling
Pattern in Parallel MRI Applications [0.9558392439655014]
We propose an alternating learning approach to learn the sampling pattern (SP) and the parameters of variational networks (VN) in accelerated parallel magnetic resonance imaging (MRI)
The proposed approach was stable and learned effective SPs with the corresponding VN parameters that produce images with better quality than other approaches.
arXiv Detail & Related papers (2021-10-27T18:42:03Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.