Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems
- URL: http://arxiv.org/abs/2410.16656v1
- Date: Tue, 22 Oct 2024 03:00:11 GMT
- Title: Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems
- Authors: Arpan Das, Pier Marzocca, Oleg Levinski,
- Abstract summary: This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD)
ParsDMD is a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both temporal and purely temporal data.
It is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations, and atmospheric sea-surface temperature (SST) data.
- Score: 0.40964539027092917
- License:
- Abstract: This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD), a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both spatiotemporal and purely temporal data. By incorporating time-delay embedding and leveraging Orthogonal Matching Pursuit (OMP), parsDMD ensures robustness against noise and effectively handles complex, nonlinear dynamics. The algorithm is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations (flow past a cylinder and transonic buffet), and atmospheric sea-surface temperature (SST) data. ParsDMD addresses a significant limitation of the traditional sparsity-promoting DMD (spDMD), which requires manual tuning of sparsity parameters through a rigorous trial-and-error process to balance between single-mode and all-mode solutions. In contrast, parsDMD autonomously determines the optimally sparse subset of modes without user intervention, while maintaining minimal computational complexity. Comparative analyses demonstrate that parsDMD consistently outperforms spDMD by providing more accurate mode identification and effective reconstruction in noisy environments. These advantages render parsDMD an effective tool for real-time diagnostics, forecasting, and reduced-order model construction across various disciplines.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Dynamic Mode Decomposition for data-driven analysis and reduced-order
modelling of ExB plasmas: II. dynamics forecasting [3.203036813451742]
We develop a variant of the Dynamic Mode Decomposition (DMD) algorithm based on variable projection optimization, called Optimized Dynamic Mode Decomposition (OPT-DMD)
We extend the application of the OPT-DMD and investigate the capabilities of the linear ROM from this algorithm toward forecasting in time of the plasma dynamics.
Despite its limitation in terms of generalized applicability to all plasma conditions, the OPT-DMD is proven as a reliable method to develop low computational cost and highly predictive data-driven reduced-order models.
arXiv Detail & Related papers (2023-08-26T01:48:29Z) - Dynamic Mode Decomposition for data-driven analysis and reduced-order
modelling of ExB plasmas: I. Extraction of spatiotemporally coherent patterns [3.203036813451742]
We evaluate the generalability of the Dynamic Mode Decomposition (DMD) algorithm for data-driven analysis and reduced-order modelling of plasma dynamics.
arXiv Detail & Related papers (2023-08-26T01:37:52Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
We introduce a trainable neural model that learns to map problem instances to a piece-wise linear value function.
$nu$-SDDP can significantly reduce problem solving cost without sacrificing solution quality.
arXiv Detail & Related papers (2021-12-01T22:55:23Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
Dynamic mode decomposition (DMD) provides a framework for learning a best-fit linear dynamics model over snapshots of temporal, or-temporal, data.
The majority of DMD algorithms are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities.
The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities.
arXiv Detail & Related papers (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.