論文の概要: DDIM-Driven Coverless Steganography Scheme with Real Key
- arxiv url: http://arxiv.org/abs/2411.06486v1
- Date: Sun, 10 Nov 2024 14:59:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:33.360466
- Title: DDIM-Driven Coverless Steganography Scheme with Real Key
- Title(参考訳): DDIM-Driven Coverless Steganography Scheme with Real Key
- Authors: Mingyu Yu, Haonan Miao, Zhengping Jin, Sujuan Qing,
- Abstract要約: ステガノグラフィーはその冗長性を利用して 秘密情報を画像に埋め込む
そこで本研究では,DDIM(Denoising Diffusion Implicit Model)を用いて高品質なステゴイメージを生成する。
本手法はカオス暗号を組み込むことにより,低画像相関の実鍵保護を実現する。
- 参考スコア(独自算出の注目度): 0.6321194486116922
- License:
- Abstract: Typical steganography embeds secret information into images by exploiting their redundancy. Since the visual imperceptibility of secret information is a key factor in scheme evaluation, conventional methods aim to balance this requirement with embedding capacity. Consequently, integrating emerging image generation models and secret transmission has been extensively explored to achieve a higher embedding capacity. Previous works mostly focus on generating stego-images with Generative Adversarial Networks (GANs) and usually rely on pseudo-keys, namely conditions or parameters involved in the generation process, which are related to secret images. However, studies on diffusion-based coverless steganography remain insufficient. In this work, we leverage the Denoising Diffusion Implicit Model (DDIM) to generate high-quality stego-images without introducing pseudo-keys, instead employing real keys to enhance security. Furthermore, our method offers low-image-correlation real-key protection by incorporating chaotic encryption. Another core innovation is that our method requires only one-time negotiation for multiple communications, unlike prior methods that necessitate negotiation for each interaction.
- Abstract(参考訳): 典型的なステガノグラフィーは、その冗長性を利用して秘密情報を画像に埋め込む。
秘密情報の視覚的認識がスキーム評価の鍵となるため,従来の手法では,この要件と埋め込み能力とのバランスを図っている。
その結果,新たな画像生成モデルとシークレットトランスミッションの統合が広範に検討され,埋め込み能力の向上が図られた。
以前の研究は主にジェネレーティブ・アドバイサル・ネットワーク(GAN)によるステゴイメージの生成に重点を置いており、通常、シークレット・イメージに関連する生成プロセスに関わる条件やパラメータである擬似キーに依存している。
しかし,拡散型無カバーステガノグラフィーの研究はいまだ不十分である。
本研究では,DDIM(Denoising Diffusion Implicit Model)を利用して,擬似鍵を導入することなく高品質なステゴイメージを生成する。
さらに,カオス暗号を組み込んだ低画像相関実鍵保護手法を提案する。
もう一つの中核的な革新は、対話ごとに交渉を必要とする従来の方法とは異なり、複数の通信に対して1回だけ交渉することである。
関連論文リスト
- Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis [7.099258248662009]
テキスト・ツー・イメージ(T2I)モデルは人工知能の開発を著しく進歩させてきた。
しかし、既存のT2Iベースの手法は、参照画像から個人を正確に再現するのに苦労することが多い。
我々は、安定拡散から得られた事前学習されたUNetを利用して、対象の顔画像を直接生成プロセスに組み込む。
論文 参考訳(メタデータ) (2024-09-27T19:31:04Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Cover-separable Fixed Neural Network Steganography via Deep Generative Models [37.08937194546323]
我々は、Cs-FNNSという、カバー分離可能な固定ニューラルネットワークステレオグラフィーを提案する。
Cs-FNNSでは,シークレットデータを受容不能な摂動に直接エンコードするSPSアルゴリズムを提案する。
本稿では,視覚的品質と非検出性の観点から,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-16T05:47:06Z) - DiffStega: Towards Universal Training-Free Coverless Image Steganography with Diffusion Models [38.17146643777956]
カバーレス画像ステガノグラフィ(CIS)は、カバー画像を使用しないことにより、非受容性を高める。
近年の研究では、拡散モデルによるCISの鍵としてテキストプロンプトが活用されている。
そこで我々は,DiffStegaを提案する。DiffStegaは,ユニバーサルアプリケーションのための革新的なトレーニングフリー拡散型CIS戦略である。
論文 参考訳(メタデータ) (2024-07-15T06:15:49Z) - Latent Diffusion Models for Attribute-Preserving Image Anonymization [4.080920304681247]
本稿では,遅延拡散モデル(LDM)に基づく画像匿名化への最初のアプローチを提案する。
CAFLaGE-Baseは、事前訓練された制御ネットと、実画像と匿名画像との距離を増やすために設計された新しい制御機構を組み合わせた2つのLCMを提案する。
論文 参考訳(メタデータ) (2024-03-21T19:09:21Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
HE拡散(HE-Diffusion)と呼ばれる同相暗号を利用したプライバシー保護型安定拡散フレームワークを提案する。
本稿では,効率的な部分的画像暗号化を実現するための新しいミン歪み法を提案する。
HEベースのプライバシ保存型安定拡散推論の実装に成功した。
論文 参考訳(メタデータ) (2024-03-09T04:56:57Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
カチン1998のステガノグラフィー情報理論モデルでは, ステガノグラフィーの術式は完全に安全であることが示されている。
また, 完全セキュアな手順の中で, 最小エントロピー結合によって誘導される場合に限, 情報スループットが最大になることを示す。
論文 参考訳(メタデータ) (2022-10-24T17:40:07Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
我々は、画像の深い確率モデルに隠蔽するための異なる計算フレームワークについて述べる。
具体的には、DNNを用いて、カバー画像の確率密度をモデル化し、学習した分布の特定の場所に秘密画像を隠す。
我々は,抽出精度とモデルセキュリティの観点から,SinGANアプローチの実現可能性を示す。
論文 参考訳(メタデータ) (2022-10-05T13:33:25Z) - On Feature Normalization and Data Augmentation [55.115583969831]
モーメント交換は、認識モデルにもモーメント情報を利用するようモデルに促す。
我々は、あるトレーニングイメージの学習した特徴のモーメントを、別のトレーニングイメージのモーメントに置き換え、ターゲットラベルを補間する。
我々のアプローチは高速で、機能空間で完全に動作し、以前の方法と異なる信号が混在しているため、既存の拡張アプローチと効果的に組み合わせることができる。
論文 参考訳(メタデータ) (2020-02-25T18:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。