論文の概要: DDIM-Driven Coverless Steganography Scheme with Real Key
- arxiv url: http://arxiv.org/abs/2411.06486v3
- Date: Thu, 13 Mar 2025 02:39:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 17:08:08.107508
- Title: DDIM-Driven Coverless Steganography Scheme with Real Key
- Title(参考訳): DDIM-Driven Coverless Steganography Scheme with Real Key
- Authors: Mingyu Yu, Haonan Miao, Zhengping Jin, Sujuan Qin,
- Abstract要約: ジェネレーションベースのカバーレスステガノグラフィーが従来の方法の代替として登場した。
本稿では,実鍵機構を利用したDDIM駆動型無カバーステガノグラフィー手法を提案する。
- 参考スコア(独自算出の注目度): 0.8892527836401771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of information hiding techniques, generation-based coverless steganography has emerged as an alternative to traditional methods, leveraging generative models to transform secret information into stego-objects rather than embedding it within the redundancy of the cover. However, existing generation-based approaches require pseudo-keys that must be shared between communication parties, leading to high overhead of frequent key exchanges and security risks due to their tight coupling with the secret information. This paper proposes a DDIM-driven coverless steganography scheme that utilizes a real-key mechanism, improving the key management. By integrating reversible data hiding (RDH) and chaotic encryption into generation model, the proposed method eliminates excessive key exchanges and reduces the correlation between the key and the secret information. Furthermore, it requires only a single key negotiation for multiple communication, which lowers overhead. Experimental results demonstrate that the proposed scheme resists substitution attacks, enhancing the security of covert communication.
- Abstract(参考訳): 情報隠蔽技術の進歩により、生成モデルを利用して秘密情報を表紙の冗長性に埋め込むのではなく、ステゴオブジェクトに変換する、従来の手法の代替として、世代ベースの表紙レスステガノグラフィーが登場した。
しかし、既存の世代ベースのアプローチでは、通信関係者間で共有しなければならない擬似鍵が必要であり、秘密情報との密結合により、頻繁な鍵交換やセキュリティリスクのオーバーヘッドが高くなる。
本稿では、実鍵機構を利用して鍵管理を改善するDDIM駆動型カバーレスステガノグラフィー手法を提案する。
可逆的データ隠蔽(RDH)とカオス暗号を生成モデルに統合することにより、過剰な鍵交換を排除し、鍵と秘密情報の相関を小さくする。
さらに、複数の通信のための単一のキーネゴシエーションしか必要とせず、オーバーヘッドを低減します。
実験により,提案手法は置換攻撃に抵抗し,秘密通信の安全性を向上することを示した。
関連論文リスト
- Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy [51.028047763426265]
セマンティック通信(SemCom)は,タスク関連情報に着目して伝送効率を向上させる。
セマンティックリッチなデータをセキュアでないチャネルで送信すると、プライバシのリスクが生じる。
本稿では,セマンティックなセマンティックな特徴を保護するために,差分プライバシー機構を統合した新しいSemComフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-23T08:42:44Z) - Multichannel Steganography: A Provably Secure Hybrid Steganographic Model for Secure Communication [0.0]
本研究では,CMO(Cover Modification)によるステガノグラフィーとCSY(Cover Synthesis)によるステガノグラフィーを合成する新しいステガノグラフィーモデルを提案する。
このモデルに基づいて、洗練されたステレオ通信プロトコルが提案され、高度な脅威に対するレジリエンスが向上する。
本研究では、SMSバンキングのような制約のある環境と、ブロックチェーントランザクションのようなリソース豊富な設定の両方に対して、モデルの実用性と適応性について検討する。
論文 参考訳(メタデータ) (2025-01-08T13:58:07Z) - Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis [7.099258248662009]
テキスト・ツー・イメージ(T2I)モデルは人工知能の開発を著しく進歩させてきた。
しかし、既存のT2Iベースの手法は、参照画像から個人を正確に再現するのに苦労することが多い。
我々は、安定拡散から得られた事前学習されたUNetを利用して、対象の顔画像を直接生成プロセスに組み込む。
論文 参考訳(メタデータ) (2024-09-27T19:31:04Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
本稿では,量子鍵分布(QKD)と古典的暗号技術を統合する新しい暗号システムを提案する。
提案手法は,E91QKDプロトコルを利用して,通信相手間で共有秘密鍵を生成する。
このキーは、Secure Hash Algorithm(SHA)を使用してハッシュされ、固定長の高エントロピーキーを提供する。
論文 参考訳(メタデータ) (2024-08-13T15:20:29Z) - Cover-separable Fixed Neural Network Steganography via Deep Generative Models [37.08937194546323]
我々は、Cs-FNNSという、カバー分離可能な固定ニューラルネットワークステレオグラフィーを提案する。
Cs-FNNSでは,シークレットデータを受容不能な摂動に直接エンコードするSPSアルゴリズムを提案する。
本稿では,視覚的品質と非検出性の観点から,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-16T05:47:06Z) - DiffStega: Towards Universal Training-Free Coverless Image Steganography with Diffusion Models [38.17146643777956]
カバーレス画像ステガノグラフィ(CIS)は、カバー画像を使用しないことにより、非受容性を高める。
近年の研究では、拡散モデルによるCISの鍵としてテキストプロンプトが活用されている。
そこで我々は,DiffStegaを提案する。DiffStegaは,ユニバーサルアプリケーションのための革新的なトレーニングフリー拡散型CIS戦略である。
論文 参考訳(メタデータ) (2024-07-15T06:15:49Z) - Securing Hybrid Wireless Body Area Networks (HyWBAN): Advancements in Semantic Communications and Jamming Techniques [2.1676500745770544]
本稿では,Hybrid Wireless Body Area Networks(HyWBANs)のセキュリティを強化するための新しい戦略について検討する。
高度なサイバー攻撃に対するHyWBANの脆弱性を認識し,セマンティックコミュニケーションとジャミングレシーバーの革新的な組み合わせを提案する。
われわれのアプローチは, 主要なセキュリティ問題に対処し, 将来安全なバイオメディカル通信システムの基盤となるものとなる。
論文 参考訳(メタデータ) (2024-04-24T18:21:08Z) - Boosting Digital Safeguards: Blending Cryptography and Steganography [0.30783046172997025]
ステガノグラフィーは、他の媒体にデータを隠蔽することで、メッセージを見えないものにすることで、隠蔽通信を容易にする。
提案手法は、人工知能(AI)とディープラーニング(DL)の最新の進歩を、特にGAN(Generative Adversarial Networks)の適用を通じて活用する。
GANの応用により、ニューラルネットワーク固有の感度を利用してデータのわずかな変更を行う、スマートでセキュアなシステムが可能になる。
論文 参考訳(メタデータ) (2024-04-09T03:36:39Z) - Latent Diffusion Models for Attribute-Preserving Image Anonymization [4.080920304681247]
本稿では,遅延拡散モデル(LDM)に基づく画像匿名化への最初のアプローチを提案する。
CAFLaGE-Baseは、事前訓練された制御ネットと、実画像と匿名画像との距離を増やすために設計された新しい制御機構を組み合わせた2つのLCMを提案する。
論文 参考訳(メタデータ) (2024-03-21T19:09:21Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
HE拡散(HE-Diffusion)と呼ばれる同相暗号を利用したプライバシー保護型安定拡散フレームワークを提案する。
本稿では,効率的な部分的画像暗号化を実現するための新しいミン歪み法を提案する。
HEベースのプライバシ保存型安定拡散推論の実装に成功した。
論文 参考訳(メタデータ) (2024-03-09T04:56:57Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
カチン1998のステガノグラフィー情報理論モデルでは, ステガノグラフィーの術式は完全に安全であることが示されている。
また, 完全セキュアな手順の中で, 最小エントロピー結合によって誘導される場合に限, 情報スループットが最大になることを示す。
論文 参考訳(メタデータ) (2022-10-24T17:40:07Z) - CLIP-Driven Fine-grained Text-Image Person Re-identification [50.94827165464813]
TIReIDは、候補画像のプールから与えられたテキストクエリに対応する画像を取得することを目的としている。
TIReIDにおけるCLIPの強力な知識をフル活用するための,CLIP駆動のきめ細かい情報抽出フレームワーク(CFine)を提案する。
論文 参考訳(メタデータ) (2022-10-19T03:43:12Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
我々は、画像の深い確率モデルに隠蔽するための異なる計算フレームワークについて述べる。
具体的には、DNNを用いて、カバー画像の確率密度をモデル化し、学習した分布の特定の場所に秘密画像を隠す。
我々は,抽出精度とモデルセキュリティの観点から,SinGANアプローチの実現可能性を示す。
論文 参考訳(メタデータ) (2022-10-05T13:33:25Z) - On Feature Normalization and Data Augmentation [55.115583969831]
モーメント交換は、認識モデルにもモーメント情報を利用するようモデルに促す。
我々は、あるトレーニングイメージの学習した特徴のモーメントを、別のトレーニングイメージのモーメントに置き換え、ターゲットラベルを補間する。
我々のアプローチは高速で、機能空間で完全に動作し、以前の方法と異なる信号が混在しているため、既存の拡張アプローチと効果的に組み合わせることができる。
論文 参考訳(メタデータ) (2020-02-25T18:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。