論文の概要: Graph Neural Networks for modelling breast biomechanical compression
- arxiv url: http://arxiv.org/abs/2411.06596v1
- Date: Sun, 10 Nov 2024 20:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:17.933603
- Title: Graph Neural Networks for modelling breast biomechanical compression
- Title(参考訳): 胸部バイオメカニカル圧縮のモデル化のためのグラフニューラルネットワーク
- Authors: Hadeel Awwad, Eloy García, Robert Martí,
- Abstract要約: 3次元モダリティからマンモグラフィーなどのX線治療への正確な画像登録には乳房圧迫シミュレーションが不可欠である。
圧縮による組織形状と位置の変化を考慮し、正確なアライメントを確保し、分析を改善している。
有限要素解析(FEA)は軟組織変形の近似に信頼性があり、精度と計算効率のバランスをとるのに苦労する。
近年の研究では、組織変形予測を高速化するために、FAAの結果に基づいて訓練されたデータ駆動モデルを用いている。
胸部圧迫シミュレーションのための物理ベースのグラフニューラルネットワーク(PhysGNN)を提案する。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License:
- Abstract: Breast compression simulation is essential for accurate image registration from 3D modalities to X-ray procedures like mammography. It accounts for tissue shape and position changes due to compression, ensuring precise alignment and improved analysis. Although Finite Element Analysis (FEA) is reliable for approximating soft tissue deformation, it struggles with balancing accuracy and computational efficiency. Recent studies have used data-driven models trained on FEA results to speed up tissue deformation predictions. We propose to explore Physics-based Graph Neural Networks (PhysGNN) for breast compression simulation. PhysGNN has been used for data-driven modelling in other domains, and this work presents the first investigation of their potential in predicting breast deformation during mammographic compression. Unlike conventional data-driven models, PhysGNN, which incorporates mesh structural information and enables inductive learning on unstructured grids, is well-suited for capturing complex breast tissue geometries. Trained on deformations from incremental FEA simulations, PhysGNN's performance is evaluated by comparing predicted nodal displacements with those from finite element (FE) simulations. This deep learning (DL) framework shows promise for accurate, rapid breast deformation approximations, offering enhanced computational efficiency for real-world scenarios.
- Abstract(参考訳): 3次元モダリティからマンモグラフィーなどのX線治療への正確な画像登録には乳房圧迫シミュレーションが不可欠である。
圧縮による組織形状と位置の変化を考慮し、正確なアライメントを確保し、分析を改善している。
有限要素解析(FEA)は軟組織変形の近似に信頼性があるが、精度と計算効率のバランスに苦慮している。
近年の研究では、組織変形予測を高速化するために、FAAの結果に基づいて訓練されたデータ駆動モデルを用いている。
胸部圧迫シミュレーションのための物理ベースのグラフニューラルネットワーク(PhysGNN)を提案する。
PhysGNNは、他の領域におけるデータ駆動型モデリングに使われており、マンモグラフィ圧縮時の乳房の変形を予測する最初の可能性について研究している。
従来のデータ駆動型モデルとは異なり、メッシュ構造情報を組み込んだPhysGNNは、非構造化グリッド上で帰納的学習を可能にする。
インクリメンタルFEAシミュレーションによる変形を学習し,有限要素シミュレーション(FE)との比較によりPhysGNNの性能評価を行った。
このディープラーニング(DL)フレームワークは、正確な乳房変形近似を約束し、現実世界のシナリオに対する計算効率を向上する。
関連論文リスト
- PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
軟部組織の変位場を粘弾性特性で予測する深層学習法を提案する。
提案手法は従来のCNNモデルよりも精度が高い。
本調査は,仮想現実における深層学習のギャップを埋めるのに役立つものと期待されている。
論文 参考訳(メタデータ) (2023-01-11T18:17:10Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Predicting Loose-Fitting Garment Deformations Using Bone-Driven Motion
Networks [63.596602299263935]
本稿では,骨駆動型モーションネットワークを用いて,ゆるやかな衣服メッシュの変形を対話的に予測する学習アルゴリズムを提案する。
提案手法は,メッシュ変形の予測精度を約20%,ハウスドルフ距離とSTEDで約10%向上させる。
論文 参考訳(メタデータ) (2022-05-03T07:54:39Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Learning for Ultrasound Speed-of-Sound Reconstruction: Impacts of
Training Data Diversity on Stability and Robustness [7.909848251752742]
共生画像に基づくデータ生成のトレーニングのための新しいシミュレーション手法を提案する。
異なるシミュレーションパラメータに対するトレーニングネットワークの感度について検討した。
実験の結果,データ集合を用いてトレーニングしたネットワークは,測定されたファントムデータだけでなく,ドメイン外のシミュレーションデータでもより安定であることがわかった。
論文 参考訳(メタデータ) (2022-02-01T11:09:35Z) - PhysGNN: A Physics-Driven Graph Neural Network Based Model for
Predicting Soft Tissue Deformation in Image-Guided Neurosurgery [0.15229257192293202]
グラフニューラルネットワーク(GNN)を利用した有限要素解析(FEA)の解を近似したデータ駆動モデルを提案する。
提案アーキテクチャであるPhysGNNは,神経外科的設定に適した計算可能でありながら,正確かつ高速な軟部組織変形近似を約束する。
論文 参考訳(メタデータ) (2021-09-09T15:43:59Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic
Soft-tissue Simulation for Robotic Surgery [13.657060682152409]
ロボット内視鏡手術で得られたライブデータは,不正確なFEMシミュレーション結果の修正にどのように用いられるかを検討する。
我々はオープンソースのda Vinciオペレーショナルシステムを用いて,ソフトチップのファントムを探索し,シミュレーションでインタラクションを再現する。
予測メッシュ位置と測定点雲との差を補正するために,ネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-03-14T00:16:08Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。