論文の概要: Understanding Scaling Laws with Statistical and Approximation Theory for Transformer Neural Networks on Intrinsically Low-dimensional Data
- arxiv url: http://arxiv.org/abs/2411.06646v1
- Date: Mon, 11 Nov 2024 01:05:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:13:14.813823
- Title: Understanding Scaling Laws with Statistical and Approximation Theory for Transformer Neural Networks on Intrinsically Low-dimensional Data
- Title(参考訳): 内在的低次元データに基づく変圧器ニューラルネットワークの統計的および近似理論によるスケーリング法則の理解
- Authors: Alex Havrilla, Wenjing Liao,
- Abstract要約: ディープニューラルネットワークでは、モデルのサイズとデータサイズの両方に依存するパワースケーリング法則に従うために、モデルの一般化誤差がしばしば観察される。
本理論は, 一般化誤差とトレーニングデータサイズと変圧器のネットワークサイズとの間のパワー則を予測する。
多様体仮説の下で低次元のデータ構造を利用することにより、データ幾何学を尊重する方法でトランスフォーマースケーリング法則を説明することができる。
- 参考スコア(独自算出の注目度): 4.481230230086981
- License:
- Abstract: When training deep neural networks, a model's generalization error is often observed to follow a power scaling law dependent both on the model size and the data size. Perhaps the best known example of such scaling laws are for transformer-based large language models, where networks with billions of parameters are trained on trillions of tokens of text. Yet, despite sustained widespread interest, a rigorous understanding of why transformer scaling laws exist is still missing. To answer this question, we establish novel statistical estimation and mathematical approximation theories for transformers when the input data are concentrated on a low-dimensional manifold. Our theory predicts a power law between the generalization error and both the training data size and the network size for transformers, where the power depends on the intrinsic dimension $d$ of the training data. Notably, the constructed model architecture is shallow, requiring only logarithmic depth in $d$. By leveraging low-dimensional data structures under a manifold hypothesis, we are able to explain transformer scaling laws in a way which respects the data geometry. Moreover, we test our theory with empirical observation by training LLMs on natural language datasets. We find the observed empirical data scaling laws closely agree with our theoretical predictions. Taken together, these results rigorously show the intrinsic dimension of data to be a crucial quantity affecting transformer scaling laws in both theory and practice.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングでは、モデルのサイズとデータサイズの両方に依存するパワースケーリング法則に従うために、モデルの一般化誤差がしばしば観察される。
このようなスケーリング法則の最もよく知られている例は、数十億のパラメータを持つネットワークが数兆のテキストトークンでトレーニングされるトランスフォーマーベースの大規模言語モデルである。
しかし、広く関心を集めているにもかかわらず、なぜトランスフォーマーのスケーリング法が存在していないのかという厳密な理解はいまだに欠けている。
この問題に対処するために、入力データが低次元多様体に集中する場合に、変圧器の新たな統計的推定と数学的近似理論を確立する。
本理論は,トレーニングデータの内在次元$d$に依存する変圧器の一般化誤差とトレーニングデータサイズとネットワークサイズとの間のパワー則を予測する。
特に、構築されたモデルアーキテクチャは浅く、対数深さを$d$でのみ必要とします。
多様体仮説の下で低次元のデータ構造を利用することにより、データ幾何学を尊重する方法でトランスフォーマースケーリング法則を説明することができる。
さらに,LLMを自然言語データセット上で学習し,経験的観察により本理論を検証した。
観測された経験的データスケーリング法則は,我々の理論的予測と密接に一致している。
まとめると、これらの結果は、データの本質的な次元が、理論と実践の両方においてトランスフォーマーのスケーリング法則に影響を与える重要な量であることを厳格に示している。
関連論文リスト
- Information-Theoretic Foundations for Neural Scaling Laws [20.617552198581024]
我々は、ニューラルスケーリング法則のための情報理論の基礎を開発する。
データとモデルサイズの間の最適関係は、対数的要因まで線形であることが観察された。
論文 参考訳(メタデータ) (2024-06-28T02:20:54Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
テストエラーの再現可能な部分は$Theta(-(a-1) + N-(a-1)/a)$であることを示す。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
論文 参考訳(メタデータ) (2024-06-12T17:53:29Z) - A Tale of Tails: Model Collapse as a Change of Scaling Laws [11.6055501181235]
私たちは、合成データがトレーニングコーパスに導入される必然的な体制において、スケーリング法はどのように変化するのか?
スケーリング法則のレンズによるモデル崩壊の理論的枠組みを開発する。
我々は、広範囲の崩壊現象を発見し、スケーリングの損失を分析し、世代ごとにスケールをシフトさせ、スキルの「アンラーニング」を行い、人間と合成データを混在させながらグルーキングを行う。
論文 参考訳(メタデータ) (2024-02-10T21:06:34Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
大量のパラメータを持つ大規模な言語モデルは、インターネットに近い数のトークンで訓練されると、ニューラルネットワークのスケーリング法則に従うことが実証的に示されている。
我々は,このニューラルスケーリング現象を捉える統計モデル(共同生成データモデルとランダム特徴モデル)を提案する。
主な発見は、自然データセットの統計に現れる電力法則が非線形ランダムな特徴写像によって拡張される方法である。
論文 参考訳(メタデータ) (2022-10-30T15:13:18Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
ニューラルネットワーク翻訳(NMT)のデータスケーリング特性に及ぼすアーキテクチャとトレーニングデータ品質の影響について検討する。
データスケーリング指数は最小限の影響を受けており、より多くのデータを追加することで、極端に悪いアーキテクチャやトレーニングデータの補償が可能になることを示唆しています。
論文 参考訳(メタデータ) (2022-02-04T06:53:49Z) - Explaining Neural Scaling Laws [17.115592382420626]
訓練されたディープニューラルネットワークの人口減少は、しばしば正確なパワー-ロースケーリング関係に従う。
本稿では、これらのスケーリング法則の起源を説明し、接続する理論を提案する。
データセットとモデルサイズの両方に対する分散制限と分解能制限のスケーリング挙動を同定する。
論文 参考訳(メタデータ) (2021-02-12T18:57:46Z) - Scaling Laws for Transfer [0.5432984841650929]
本研究では,教師なし微調整環境における分布間の移動学習のスケーリング法則について検討する。
提案手法は,パラメータ数と微調整データセットサイズに比例したパワーロー則を用いて,データ転送の効率をよく記述する。
論文 参考訳(メタデータ) (2021-02-02T04:07:38Z) - A Neural Scaling Law from the Dimension of the Data Manifold [8.656787568717252]
データが豊富であれば、よく訓練されたニューラルネットワークによって達成される損失は、ネットワークパラメータの数でN-alpha$のパワーロープロットとしてスケールする。
スケーリングの法則は、ニューラルモデルが本質的に内在次元$d$のデータ多様体上で回帰を行えば説明できる。
この単純な理論は、スケーリング指数が、クロスエントロピーと平均二乗誤差損失に対して$alpha approx 4/d$となることを予測している。
論文 参考訳(メタデータ) (2020-04-22T19:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。