論文の概要: A Novel Combined Data-Driven Approach for Electricity Theft Detection
- arxiv url: http://arxiv.org/abs/2411.06649v1
- Date: Mon, 11 Nov 2024 01:30:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:03.963863
- Title: A Novel Combined Data-Driven Approach for Electricity Theft Detection
- Title(参考訳): 電気的盗難検出のためのデータ駆動型新しいアプローチ
- Authors: Kedi Zheng, Qixin Chen, Yi Wang, Chongqing Kang, Qing Xia,
- Abstract要約: 本稿では,2つの新しいデータマイニング手法を組み合わせることで問題を解決する。
1つのテクニックは最大情報係数(MIC)であり、非技術的損失(NTL)と消費者の一定の電気的挙動との相関を見出すことができる。
CFSFDPは数千の負荷プロファイルの中から異常なユーザを見つけ,任意の形状の電気盗難を検出するのに極めて適している。
- 参考スコア(独自算出の注目度): 3.7853895545621468
- License:
- Abstract: The two-way flow of information and energy is an important feature of the Energy Internet. Data analytics is a powerful tool in the information flow that aims to solve practical problems using data mining techniques. As the problem of electricity thefts via tampering with smart meters continues to increase, the abnormal behaviors of thefts become more diversified and more difficult to detect. Thus, a data analytics method for detecting various types of electricity thefts is required. However, the existing methods either require a labeled dataset or additional system information which is difficult to obtain in reality or have poor detection accuracy. In this paper, we combine two novel data mining techniques to solve the problem. One technique is the Maximum Information Coefficient (MIC), which can find the correlations between the non-technical loss (NTL) and a certain electricity behavior of the consumer. MIC can be used to precisely detect thefts that appear normal in shapes. The other technique is the clustering technique by fast search and find of density peaks (CFSFDP). CFSFDP finds the abnormal users among thousands of load profiles, making it quite suitable for detecting electricity thefts with arbitrary shapes. Next, a framework for combining the advantages of the two techniques is proposed. Numerical experiments on the Irish smart meter dataset are conducted to show the good performance of the combined method.
- Abstract(参考訳): 情報とエネルギーの双方向の流れは、エネルギーインターネットの重要な特徴である。
データ分析は情報フローにおいて強力なツールであり、データマイニング技術を用いて実践的な問題を解決することを目的としている。
スマートメーターによる改ざんによる電気盗難の問題は増加し続けており、盗難の異常な挙動はより多様化し、検出が困難になる。
これにより、各種の電気盗難を検出するためのデータ分析方法が求められている。
しかし,既存の手法ではラベル付きデータセットや,実際の取得が困難なシステム情報を必要とするか,検出精度が低い。
本稿では,2つの新しいデータマイニング手法を組み合わせることで問題を解決する。
1つのテクニックは最大情報係数(MIC)であり、非技術的損失(NTL)と消費者の一定の電気的挙動との相関を見出すことができる。
MICは、形状が正常に見える盗難を正確に検出するために使用できる。
もう1つのテクニックは、高速な探索と密度ピークの発見(CFSFDP)によるクラスタリング手法である。
CFSFDPは数千の負荷プロファイルの中で異常なユーザを見つけ、任意の形状の電気盗難を検出するのに非常に適している。
次に,2つの手法の利点を組み合わせるための枠組みを提案する。
アイルランドのスマートメータデータセットに関する数値実験を行い、組み合わせた手法の優れた性能を示す。
関連論文リスト
- Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
ファサー計測装置(PMU)を用いて電力システムを監視することは、将来有望な技術の一つである。
サイバー物理的相互作用の増加は、利点と欠点の両方をもたらし、そこでは、測定データの異常の形で欠点の1つが生まれる。
本稿では,PMUデータにおける異常検出の様々な手法に基づくハイブリッドAIベースモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2022-09-21T11:22:01Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - EnsembleNTLDetect: An Intelligent Framework for Electricity Theft
Detection in Smart Grid [0.0]
本稿では,堅牢でスケーラブルな電気盗難検出フレームワークであるEnsembleNTLDetectを紹介する。
一連の効率的なデータ前処理技術と機械学習モデルを使って、電気盗難を正確に検出する。
Conditional Generative Adversarial Network (CTGAN) は、堅牢なトレーニングを保証するためにデータセットを増強するために使用される。
論文 参考訳(メタデータ) (2021-10-09T08:19:03Z) - Heterogeneous Noisy Short Signal Camouflage in Multi-Domain Environment
Decision-Making [0.0]
画像や音声信号に変換することで,情報(センサ信号)を隠蔽する手法を提案する。
軍事近代化に向けた最新の試みの1つとして、インテリジェントな識別・検出操作を実現する上での課題について検討する。
論文 参考訳(メタデータ) (2021-06-02T22:59:58Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
論文 参考訳(メタデータ) (2021-01-18T06:34:45Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。