A hybrid single quantum dot coupled cavity on a CMOS-compatible SiC photonic chip for Purcell-enhanced deterministic single-photon emission
- URL: http://arxiv.org/abs/2411.06677v1
- Date: Mon, 11 Nov 2024 02:41:23 GMT
- Title: A hybrid single quantum dot coupled cavity on a CMOS-compatible SiC photonic chip for Purcell-enhanced deterministic single-photon emission
- Authors: Yifan Zhu, Runze Liu, Ailun Yi, Xudong Wang, Yuanhao Qin, Zihao Zhao, Junyi Zhao, Bowen Chen, Xiuqi Zhang, Sannian Song, Yongheng Huo, Xin Ou, Jiaxiang Zhang,
- Abstract summary: Integration of a single quantum emitter with a cavity may unleash new perspectives for integrated photonic quantum applications.
Here we demonstrate a hybrid micro-ring resonator (HMRR) coupled with self-assembled quantum dots (QDs) for cavity-enhanced deterministic single-photon emission.
micro-heater allows precise tuning of individual QDs in resonance with the cavity modes, thereby enhancing single-photon emission with a Purcell factor of about 4.9.
- Score: 16.07236834261653
- License:
- Abstract: The ability to control nonclassical light emission from a single quantum emitter by an integrated cavity may unleash new perspectives for integrated photonic quantum applications. However, coupling a single quantum emitter to cavity within photonic circuitry towards creation of the Purcell-enhanced single-photon emission is elusive due to the complexity of integrating active devices in low-loss photonic circuits. Here we demonstrate a hybrid micro-ring resonator (HMRR) coupled with self-assembled quantum dots (QDs) for cavity-enhanced deterministic single-photon emission. The HMRR cavity supports whispering-gallery modes with quality factors up to 7800. By further introducing a micro-heater, we show that the photon emission of QDs can be locally and dynamically tuned over one free spectral ranges of the HMRR (~4 nm). This allows precise tuning of individual QDs in resonance with the cavity modes, thereby enhancing single-photon emission with a Purcell factor of about 4.9. Our results on the hybrid integrated cavities coupled with two-level quantum emitters emerge as promising devices for chip-based scalable photonic quantum applications.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Post-fabrication tuning of circular Bragg resonators for enhanced
emitter-cavity coupling [0.0]
We show that an initial spectral mismatch can be corrected after device fabrication by repeated wet chemical etching steps.
We demonstrate 16 nm wavelength tuning for optical modes in AlGaAs resonators on oxide, leading to a 4-fold enhancement of the emission of single embedded GaAs quantum dots.
arXiv Detail & Related papers (2023-09-27T17:21:13Z) - Tunable quantum dots in monolithic Fabry-Perot microcavities for
high-performance single-photon sources [13.880332867320176]
Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources.
Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator.
We have demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity.
arXiv Detail & Related papers (2023-09-24T15:06:47Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Hybrid integration of deterministic quantum dots-based single-photon
sources with CMOS-compatible silicon carbide photonics [19.136086737501603]
Thin film 4H-Silicon carbide (4H-SiC) is emerging as a contender for realizing large-scale optical quantum circuits.
We demonstrate hybrid integration of self-assembled InGaAs quantum dots (QDs) based single-photon sources (SPSs) with wafer-scale 4H-SiC photonic chips prepared by ion slicing technique.
arXiv Detail & Related papers (2022-03-23T05:32:06Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Purcell enhanced and indistinguishable single-photon generation from
quantum dots coupled to on-chip integrated ring resonators [0.2642406403099596]
Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications.
We develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides.
We demonstrate an on-demand single-photon generation with strongly suppressed multi-photon emission probability as low as 1% and two-photon interference with visibility up to 95%.
arXiv Detail & Related papers (2020-07-25T12:43:53Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.