Evaluating Large Language Models on Financial Report Summarization: An Empirical Study
- URL: http://arxiv.org/abs/2411.06852v1
- Date: Mon, 11 Nov 2024 10:36:04 GMT
- Title: Evaluating Large Language Models on Financial Report Summarization: An Empirical Study
- Authors: Xinqi Yang, Scott Zang, Yong Ren, Dingjie Peng, Zheng Wen,
- Abstract summary: We conduct a comparative study on three state-of-the-art Large Language Models (LLMs)
Our primary motivation is to explore how these models can be harnessed within finance, a field demanding precision, contextual relevance, and robustness against erroneous or misleading information.
We introduce an innovative evaluation framework that integrates both quantitative metrics (e.g., precision, recall) and qualitative analyses (e.g., contextual fit, consistency) to provide a holistic view of each model's output quality.
- Score: 9.28042182186057
- License:
- Abstract: In recent years, Large Language Models (LLMs) have demonstrated remarkable versatility across various applications, including natural language understanding, domain-specific knowledge tasks, etc. However, applying LLMs to complex, high-stakes domains like finance requires rigorous evaluation to ensure reliability, accuracy, and compliance with industry standards. To address this need, we conduct a comprehensive and comparative study on three state-of-the-art LLMs, GLM-4, Mistral-NeMo, and LLaMA3.1, focusing on their effectiveness in generating automated financial reports. Our primary motivation is to explore how these models can be harnessed within finance, a field demanding precision, contextual relevance, and robustness against erroneous or misleading information. By examining each model's capabilities, we aim to provide an insightful assessment of their strengths and limitations. Our paper offers benchmarks for financial report analysis, encompassing proposed metrics such as ROUGE-1, BERT Score, and LLM Score. We introduce an innovative evaluation framework that integrates both quantitative metrics (e.g., precision, recall) and qualitative analyses (e.g., contextual fit, consistency) to provide a holistic view of each model's output quality. Additionally, we make our financial dataset publicly available, inviting researchers and practitioners to leverage, scrutinize, and enhance our findings through broader community engagement and collaborative improvement. Our dataset is available on huggingface.
Related papers
- Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models [22.594428755214356]
"Golden Touchstone" is the first comprehensive bilingual benchmark for financial LLMs.
benchmarks include a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities.
We open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning.
arXiv Detail & Related papers (2024-11-09T20:09:11Z) - CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications [10.225210627594894]
This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks.
Financial classification, financial text summarization, and single stock trading are investigated.
Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
arXiv Detail & Related papers (2024-07-02T05:04:13Z) - Financial Knowledge Large Language Model [4.599537455808687]
We introduce IDEA-FinBench, an evaluation benchmark for assessing financial knowledge in large language models (LLMs)
We propose IDEA-FinKER, a framework designed to facilitate the rapid adaptation of general LLMs to the financial domain.
Finally, we present IDEA-FinQA, a financial question-answering system powered by LLMs.
arXiv Detail & Related papers (2024-06-29T08:26:49Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
Generalist language models tend to fall short in tasks specifically tailored for finance.
Two foundation models with less than 1.5B parameters have been adapted using a wide range of strategies.
We show that small LLMs have comparable performance to larger scale models, while being more efficient in terms of parameters and data.
arXiv Detail & Related papers (2024-01-26T11:04:01Z) - Large Language Models as Automated Aligners for benchmarking
Vision-Language Models [48.4367174400306]
Vision-Language Models (VLMs) have reached a new level of sophistication, showing notable competence in executing intricate cognition and reasoning tasks.
Existing evaluation benchmarks, primarily relying on rigid, hand-crafted datasets, face significant limitations in assessing the alignment of these increasingly anthropomorphic models with human intelligence.
In this work, we address the limitations via Auto-Bench, which delves into exploring LLMs as proficient curation, measuring the alignment betweenVLMs and human intelligence and value through automatic data curation and assessment.
arXiv Detail & Related papers (2023-11-24T16:12:05Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
This paper introduces a distinctive approach anchored in the Instruction Tuning paradigm for open-source large language models.
We capitalize on the interoperability of open-source models, ensuring a seamless and transparent integration.
The paper presents a benchmarking scheme designed for end-to-end training and testing, employing a cost-effective progression.
arXiv Detail & Related papers (2023-10-07T12:52:58Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
Large Language Models (LLMs) have great potential for credit scoring tasks, with strong generalization ability across multiple tasks.
We propose the first open-source comprehensive framework for exploring LLMs for credit scoring.
We then propose the first Credit and Risk Assessment Large Language Model (CALM) by instruction tuning, tailored to the nuanced demands of various financial risk assessment tasks.
arXiv Detail & Related papers (2023-10-01T03:50:34Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
We construct a Knowledge-oriented LLM Assessment benchmark (KoLA)
We mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks.
We use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, to evaluate the capacity to handle unseen data and evolving knowledge.
arXiv Detail & Related papers (2023-06-15T17:20:46Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.