Quantum machine learning via continuous-variable cluster states and teleportation
- URL: http://arxiv.org/abs/2411.06907v1
- Date: Mon, 11 Nov 2024 12:11:16 GMT
- Title: Quantum machine learning via continuous-variable cluster states and teleportation
- Authors: Jorge GarcĂa-Beni, Iris Paparelle, Valentina Parigi, Gian Luca Giorgi, Miguel C. Soriano, Roberta Zambrini,
- Abstract summary: A new approach suitable for distributed quantum machine learning and exhibiting memory is proposed for a photonic platform.
This measurement-based quantum reservoir computing takes advantage of continuous variable cluster states as the main quantum resource.
- Score: 2.473948454680334
- License:
- Abstract: A new approach suitable for distributed quantum machine learning and exhibiting memory is proposed for a photonic platform. This measurement-based quantum reservoir computing takes advantage of continuous variable cluster states as the main quantum resource. Cluster states are key to several photonic quantum technologies, enabling universal quantum computing as well as quantum communication protocols. The proposed measurement-based quantum reservoir computing is based on a neural network of cluster states and local operations, where input data are encoded through measurement, thanks to quantum teleportation. In this design, measurements enable input injections, information processing and continuous monitoring for time series processing. The architecture's power and versatility are tested by performing a set of benchmark tasks showing that the protocol displays internal memory and is suitable for both static and temporal information processing without hardware modifications. This design opens the way to distributed machine learning.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Process Learning Through Neural Emulation [3.7228085662092845]
We introduce a neural network that emulates the unknown process by constructing an internal representation of the input ensemble.
We show that our model exhibits high accuracy in applications to quantum computing, quantum photonics, and quantum many-body physics.
arXiv Detail & Related papers (2023-08-17T06:53:58Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - Quantum-enhanced bosonic learning machine [0.0]
We show a quantum-enhanced bosonic learning machine operating on quantum data with a system of trapped ions.
We implement the unsupervised K-means algorithm to recognize a pattern in a set of high-dimensional quantum states.
We use the discovered knowledge to classify unknown quantum states with the supervised k-NN algorithm.
arXiv Detail & Related papers (2021-04-09T02:44:57Z) - Learning Temporal Quantum Tomography [0.0]
Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices.
We develop a practical and approximate tomography method using a recurrent machine learning framework.
We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.
arXiv Detail & Related papers (2021-03-25T17:01:24Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.