Sensor Control for Information Gain in Dynamic, Sparse and Partially
Observed Environments
- URL: http://arxiv.org/abs/2211.01527v2
- Date: Mon, 22 May 2023 19:53:33 GMT
- Title: Sensor Control for Information Gain in Dynamic, Sparse and Partially
Observed Environments
- Authors: J. Brian Burns, Aravind Sundaresan, Pedro Sequeira, Vidyasagar Sadhu
- Abstract summary: We present an approach for autonomous sensor control for information gathering under partially observable, dynamic and sparsely sampled environments.
We extend the Deep Anticipatory Network (DAN) Reinforcement Learning framework by (1) improving exploration in sparse, non-stationary environments using a novel information gain reward.
We also extend this problem to situations in which sampling from the intended RF spectrum/field is limited and propose a model-based version of the original RL algorithm that fine-tunes the controller via a model that is iteratively improved from the limited field sampling.
- Score: 1.5402666674186938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for autonomous sensor control for information
gathering under partially observable, dynamic and sparsely sampled environments
that maximizes information about entities present in that space. We describe
our approach for the task of Radio-Frequency (RF) spectrum monitoring, where
the goal is to search for and track unknown, dynamic signals in the
environment. To this end, we extend the Deep Anticipatory Network (DAN)
Reinforcement Learning (RL) framework by (1) improving exploration in sparse,
non-stationary environments using a novel information gain reward, and (2)
scaling up the control space and enabling the monitoring of complex, dynamic
activity patterns using hybrid convolutional-recurrent neural layers. We also
extend this problem to situations in which sampling from the intended RF
spectrum/field is limited and propose a model-based version of the original RL
algorithm that fine-tunes the controller via a model that is iteratively
improved from the limited field sampling. Results in simulated RF environments
of differing complexity show that our system outperforms the standard DAN
architecture and is more flexible and robust than baseline expert-designed
agents. We also show that it is adaptable to non-stationary emission
environments.
Related papers
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Bayesian optimization of distributed neurodynamical controller models
for spatial navigation [1.9249287163937971]
We introduce the NeuroSwarms controller, in which agent-based interactions are modeled by analogy to neuronal network interactions.
This complexity precludes linear analyses of stability, controllability, and performance typically used to study conventional swarm models.
We present a framework for tuning dynamical controller models of autonomous multi-agent systems based on Bayesian Optimization.
arXiv Detail & Related papers (2021-10-31T21:43:06Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR)
We propose a reinforcement learning (RL) based algorithm for cognitive multi-target detection in the presence of unknown disturbance statistics.
Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments.
arXiv Detail & Related papers (2020-05-10T16:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.