A neural-network based anomaly detection system and a safety protocol to protect vehicular network
- URL: http://arxiv.org/abs/2411.07013v1
- Date: Mon, 11 Nov 2024 14:15:59 GMT
- Title: A neural-network based anomaly detection system and a safety protocol to protect vehicular network
- Authors: Marco Franceschini,
- Abstract summary: This thesis addresses the use of Cooperative Intelligent Transport Systems (CITS) to improve road safety and efficiency by enabling vehicle-to-vehicle communication.
To ensure safety, the thesis proposes a Machine Learning-based Misbehavior Detection System (MDS) using Long Short-Term Memory (LSTM) networks.
- Score: 0.0
- License:
- Abstract: This thesis addresses the use of Cooperative Intelligent Transport Systems (CITS) to improve road safety and efficiency by enabling vehicle-to-vehicle communication, highlighting the importance of secure and accurate data exchange. To ensure safety, the thesis proposes a Machine Learning-based Misbehavior Detection System (MDS) using Long Short-Term Memory (LSTM) networks to detect and mitigate incorrect or misleading messages within vehicular networks. Trained offline on the VeReMi dataset, the detection model is tested in real-time within a platooning scenario, demonstrating that it can prevent nearly all accidents caused by misbehavior by triggering a defense protocol that dissolves the platoon if anomalies are detected. The results show that while the system can accurately detect general misbehavior, it struggles to label specific types due to varying traffic conditions, implying the difficulty of creating a universally adaptive protocol. However, the thesis suggests that with more data and further refinement, this MDS could be implemented in real-world CITS, enhancing driving safety by mitigating risks from misbehavior in cooperative driving networks.
Related papers
- A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
We present an assessment framework that allows for reproducible, comparable, and rapid evaluation of anomaly detection algorithms.
We evaluate exemplary detection mechanisms and reveal how the detection performance is influenced by different combinations of TSN traffic flows and anomaly types.
arXiv Detail & Related papers (2024-05-02T14:29:42Z) - Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
We propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security.
Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication.
Extensive experimental results show the effectiveness and efficiency of SISSA.
arXiv Detail & Related papers (2024-02-21T03:31:40Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus [0.0]
We present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques.
Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall.
Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles.
arXiv Detail & Related papers (2023-09-18T21:42:09Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Context-Aware Target Classification with Hybrid Gaussian Process
prediction for Cooperative Vehicle Safety systems [2.862606936691229]
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles.
Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system.
We propose a Context-Aware Target Classification (CA-TC) module and a hybrid learning-based predictive modeling technique for CVS systems.
arXiv Detail & Related papers (2022-12-24T22:03:08Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
We present a cooperative perception scheme with deep reinforcement learning to enhance the detection accuracy for the surrounding objects.
Our scheme mitigates the network load in vehicular communication networks and enhances the communication reliability.
arXiv Detail & Related papers (2020-04-23T01:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.