論文の概要: mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA
- arxiv url: http://arxiv.org/abs/2411.15041v1
- Date: Fri, 22 Nov 2024 16:15:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:07.770458
- Title: mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA
- Title(参考訳): mR$^2$AG:知識ベースVQAのためのマルチモーダル検索-リフレクション強化生成
- Authors: Tao Zhang, Ziqi Zhang, Zongyang Ma, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li, Junfu Pu, Yuxuan Zhao, Zehua Xie, Jin Ma, Ying Shan, Weiming Hu,
- Abstract要約: マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
- 参考スコア(独自算出の注目度): 78.45521005703958
- License:
- Abstract: Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR$^2$AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR$^2$AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR$^2$AG Instruction-Tuning dataset (mR$^2$AG-IT). mR$^2$AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.
- Abstract(参考訳): Advanced Multimodal Large Language Models (MLLM) は、INFOSEEK や Encyclopedic-VQA のような近年の知識に基づく VQA タスクと競合する。
したがって、MLLMに包括的で最新の知識を提供し、知識範囲を効果的に拡大するために、マルチモーダル検索拡張生成(mRAG)が自然に導入される。
しかし、現在のmRAGメソッドには、次のような固有の欠点がある。
1)外部知識が不要な場合でも検索を行う。
2)クエリをサポートする証拠の特定の欠如。
3)追加の情報フィルタリングモジュールやルールによるモデルの複雑さの増大。
これらの欠点に対処するために, 適応的適応および有用な情報ローカライゼーションを実現し, 2つの容易で実装が容易なリフレクション操作による解答を可能にする, 新しい一般化フレームワークである \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG) を提案する。
mR$^2$AG では、Retrieval-Reflection は異なるユーザクエリを区別し、冗長な検索コールを避けるように設計され、Relevance-Reflection は、検索したコンテンツの有効な証拠を探索し、それに応じて回答を生成する MLLM のガイドとなる。
さらに、mR$^2$AGは、提案したmR$^2$AGインストラクション-チューニングデータセット(mR$^2$AG-IT)上で、効率的な微調整を行うことができる。
mR$^2$AGは、最先端のMLLM(eg , GPT-4v/o)とRAGベースのMLLMをINFOSEEKとEncyclopedic-VQAで大幅に上回り、幅広い視覚依存タスクにおけるベースMLLMの異常な能力を維持している。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々は,MLLMレトリバーが提示するモダリティバイアスを軽減するために,モダリティを考慮したハードネガティブマイニングを提案する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG)は、検索ツールを利用して外部データベースにアクセスする。
既存のRAGシステムは主に簡単な質問応答タスクに有効である。
本稿では,MemoRAGを提案する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented Generation (RAG)技術は、大規模言語モデル(LLM)のコンテキスト内学習機能を利用して、より正確で関連する応答を生成する。
重要なコンポーネントであるQuery Rewriterモジュールは、検索フレンドリーなクエリを生成することで知識検索を強化する。
これら4つのRAGモジュールは、RAGシステムの応答品質と効率を相乗的に改善する。
論文 参考訳(メタデータ) (2024-07-15T12:35:00Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
検索拡張現実(RAG)を備えた大規模言語モデル(LLM)は、スケーラブルな生成AIソリューションに最適な選択肢である。
本研究では,データ認証,ユーザクエリルーティング,データ検索,エンタープライズデータテーブルからの質問応答機能へのカスタムプロンプトを実現するために,複数のLLMを起動可能なLLMベースのユニークなシステムを提案する。
提案するシステムと評価基準は,持続可能性,財務状況,ソーシャルメディア領域において,数百のユーザクエリに対して,90%以上の信頼性スコアを達成している。
論文 参考訳(メタデータ) (2024-05-07T02:49:59Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。