論文の概要: DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2505.07233v2
- Date: Fri, 16 May 2025 02:47:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 12:32:17.869021
- Title: DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
- Title(参考訳): DynamicRAG:Retrieval-Augmented Generationにおける動的リグレードのフィードバックとしての大規模言語モデルの出力の活用
- Authors: Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, Jiawei Han,
- Abstract要約: リランカは、生成品質と説明可能性を高めるために、検索した文書の精錬において重要な役割を果たす。
本稿では,リランカが検索した文書の順序と数の両方を動的に調整する新しいRAGフレームワークであるDynamicRAGを提案する。
- 参考スコア(独自算出の注目度): 23.060355911225923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) systems combine large language models (LLMs) with external knowledge retrieval, making them highly effective for knowledge-intensive tasks. A crucial but often under-explored component of these systems is the reranker. Since irrelevant documents in RAG systems can mislead the generator, the reranker plays a vital role in refining retrieved documents to enhance generation quality and explainability. However, it is challenging to determine the appropriate number of documents ($k$) that the reranker should select: too few may result in missing critical information, while too many introduce noise and inefficiencies. Although recent studies have explored LLM-based rerankers, they primarily leverage internal model knowledge and overlook the rich supervisory signals that LLMs can provide, such as using response quality as feedback for optimizing reranking decisions. In this paper, we propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents based on the query. We model the reranker as an agent optimized through reinforcement learning (RL), using rewards derived from LLM output quality. Across seven knowledge-intensive datasets, DynamicRAG demonstrates superior performance, achieving state-of-the-art results among models of same parameter sizes. The model, data and code are available at https://github.com/GasolSun36/DynamicRAG.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) システムは、大きな言語モデル(LLM)と外部知識検索を組み合わせたもので、知識集約的なタスクに非常に効果的である。
これらのシステムの重要な部分であるが、しばしば未探索の要素はリランカーである。
RAGシステムの無関係な文書はジェネレータを誤解させる可能性があるため、リランカは、生成品質と説明可能性を高めるために、取得した文書の精製において重要な役割を果たす。
しかし、リランカーが選択すべき文書の適切な数(k$)を決定することは困難である。
近年, LLM を用いたリランカの探索が行われているが, 主に内部モデル知識を活用し, LLM が提供できる豊富な監視信号を見落としている。
本稿では,リランカが検索した文書の順序と数を動的に調整する新しいRAGフレームワークであるDynamicRAGを提案する。
我々は、LLMの出力品質から得られる報酬を用いて、強化学習(RL)により最適化されたエージェントとしてリランカーをモデル化する。
7つの知識集約型データセットに対して、DynamicRAGは優れたパフォーマンスを示し、同じパラメータサイズのモデル間で最先端の結果を達成する。
モデル、データ、コードはhttps://github.com/GasolSun36/DynamicRAG.comで入手できる。
関連論文リスト
- Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
本稿では,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部検索と独自のパラメトリック知識の言語化を動的に決定できるようにする。
近接探索による動的知識源推定を導入し,知識源決定の精度を向上させる。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - Ext2Gen: Alignment through Unified Extraction and Generation for Robust Retrieval-Augmented Generation [18.570899885235104]
提案するExt2Genは,回答を生成する前にクエリ関連文を抽出することでRAGを強化する新しい抽出列生成モデルである。
実験により、Ext2Genはクエリ関連文を高い精度とリコールで効果的に識別し、信頼性の高い回答をもたらすことが示された。
論文 参考訳(メタデータ) (2025-02-28T06:46:53Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
本稿では,RAGパイプラインの既存の制約について検討し,テキスト検索の方法を紹介する。
高度なチャンキングテクニック、クエリ拡張、メタデータアノテーションの組み込み、再ランク付けアルゴリズムの適用、埋め込みアルゴリズムの微調整などの戦略を練っている。
論文 参考訳(メタデータ) (2024-03-23T00:49:40Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。